const mem = @import("std").mem; const std = @import("std"); const mimalloc = @import("./mimalloc.zig"); const Environment = @import("../env.zig"); const FeatureFlags = @import("../feature_flags.zig"); const Allocator = mem.Allocator; const assert = bun.assert; const bun = @import("bun"); const log = bun.Output.scoped(.mimalloc, true); pub const Arena = struct { heap: ?*mimalloc.Heap = null, /// Internally, mimalloc calls mi_heap_get_default() /// to get the default heap. /// It uses pthread_getspecific to do that. /// We can save those extra calls if we just do it once in here pub fn getThreadlocalDefault() Allocator { return Allocator{ .ptr = mimalloc.mi_heap_get_default(), .vtable = &c_allocator_vtable }; } pub fn backingAllocator(this: Arena) Allocator { var arena = Arena{ .heap = this.heap.?.backing() }; return arena.allocator(); } pub fn allocator(this: Arena) Allocator { @setRuntimeSafety(false); return Allocator{ .ptr = this.heap.?, .vtable = &c_allocator_vtable }; } pub fn dumpThreadStats(_: *Arena) void { const dump_fn = struct { pub fn dump(textZ: [*:0]const u8, _: ?*anyopaque) callconv(.C) void { const text = bun.span(textZ); bun.Output.errorWriter().writeAll(text) catch {}; } }.dump; mimalloc.mi_thread_stats_print_out(dump_fn, null); bun.Output.flush(); } pub fn dumpStats(_: *Arena) void { const dump_fn = struct { pub fn dump(textZ: [*:0]const u8, _: ?*anyopaque) callconv(.C) void { const text = bun.span(textZ); bun.Output.errorWriter().writeAll(text) catch {}; } }.dump; mimalloc.mi_stats_print_out(dump_fn, null); bun.Output.flush(); } pub fn deinit(this: *Arena) void { mimalloc.mi_heap_destroy(bun.take(&this.heap).?); } pub fn init() !Arena { const arena = Arena{ .heap = mimalloc.mi_heap_new() orelse return error.OutOfMemory }; return arena; } pub fn gc(this: Arena) void { mimalloc.mi_heap_collect(this.heap orelse return, false); } pub inline fn helpCatchMemoryIssues(this: Arena) void { if (comptime FeatureFlags.help_catch_memory_issues) { this.gc(); bun.Mimalloc.mi_collect(false); } } pub fn ownsPtr(this: Arena, ptr: *const anyopaque) bool { return mimalloc.mi_heap_check_owned(this.heap.?, ptr); } pub const supports_posix_memalign = true; fn alignedAlloc(heap: *mimalloc.Heap, len: usize, alignment: mem.Alignment) ?[*]u8 { log("Malloc: {d}\n", .{len}); const ptr: ?*anyopaque = if (mimalloc.canUseAlignedAlloc(len, alignment.toByteUnits())) mimalloc.mi_heap_malloc_aligned(heap, len, alignment.toByteUnits()) else mimalloc.mi_heap_malloc(heap, len); if (comptime Environment.isDebug) { const usable = mimalloc.mi_malloc_usable_size(ptr); if (usable < len) { std.debug.panic("mimalloc: allocated size is too small: {d} < {d}", .{ usable, len }); } } return if (ptr) |p| @as([*]u8, @ptrCast(p)) else null; } fn alignedAllocSize(ptr: [*]u8) usize { return mimalloc.mi_malloc_usable_size(ptr); } fn alloc(arena: *anyopaque, len: usize, alignment: mem.Alignment, _: usize) ?[*]u8 { const this = bun.cast(*mimalloc.Heap, arena); return alignedAlloc( this, len, alignment, ); } fn resize(_: *anyopaque, buf: []u8, _: mem.Alignment, new_len: usize, _: usize) bool { return mimalloc.mi_expand(buf.ptr, new_len) != null; } fn free( _: *anyopaque, buf: []u8, alignment: mem.Alignment, _: usize, ) void { // mi_free_size internally just asserts the size // so it's faster if we don't pass that value through // but its good to have that assertion if (comptime Environment.isDebug) { assert(mimalloc.mi_is_in_heap_region(buf.ptr)); if (mimalloc.canUseAlignedAlloc(buf.len, alignment.toByteUnits())) mimalloc.mi_free_size_aligned(buf.ptr, buf.len, alignment.toByteUnits()) else mimalloc.mi_free_size(buf.ptr, buf.len); } else { mimalloc.mi_free(buf.ptr); } } /// Attempt to expand or shrink memory, allowing relocation. /// /// `memory.len` must equal the length requested from the most recent /// successful call to `alloc`, `resize`, or `remap`. `alignment` must /// equal the same value that was passed as the `alignment` parameter to /// the original `alloc` call. /// /// A non-`null` return value indicates the resize was successful. The /// allocation may have same address, or may have been relocated. In either /// case, the allocation now has size of `new_len`. A `null` return value /// indicates that the resize would be equivalent to allocating new memory, /// copying the bytes from the old memory, and then freeing the old memory. /// In such case, it is more efficient for the caller to perform the copy. /// /// `new_len` must be greater than zero. /// /// `ret_addr` is optionally provided as the first return address of the /// allocation call stack. If the value is `0` it means no return address /// has been provided. fn remap(this: *anyopaque, buf: []u8, alignment: mem.Alignment, new_len: usize, _: usize) ?[*]u8 { const aligned_size = alignment.toByteUnits(); const value = mimalloc.mi_heap_realloc_aligned(@ptrCast(this), buf.ptr, new_len, aligned_size); return @ptrCast(value); } }; const c_allocator_vtable = Allocator.VTable{ .alloc = &Arena.alloc, .resize = &Arena.resize, .remap = &Arena.remap, .free = &Arena.free, };