//! This type is a `GenericAllocator`; see `src/allocators.zig`. const Self = @This(); #heap: if (safety_checks) Owned(*DebugHeap) else *mimalloc.Heap, /// Uses the default thread-local heap. This type is zero-sized. /// /// This type is a `GenericAllocator`; see `src/allocators.zig`. pub const Default = struct { pub fn allocator(self: Default) std.mem.Allocator { _ = self; return Borrowed.getDefault().allocator(); } }; /// Borrowed version of `MimallocArena`, returned by `MimallocArena.borrow`. /// Using this type makes it clear who actually owns the `MimallocArena`, and prevents /// `deinit` from being called twice. /// /// This type is a `GenericAllocator`; see `src/allocators.zig`. pub const Borrowed = struct { #heap: BorrowedHeap, pub fn allocator(self: Borrowed) std.mem.Allocator { return .{ .ptr = self.#heap, .vtable = &c_allocator_vtable }; } pub fn getDefault() Borrowed { return .{ .#heap = getThreadHeap() }; } pub fn gc(self: Borrowed) void { mimalloc.mi_heap_collect(self.getMimallocHeap(), false); } pub fn helpCatchMemoryIssues(self: Borrowed) void { if (comptime bun.FeatureFlags.help_catch_memory_issues) { self.gc(); bun.mimalloc.mi_collect(false); } } pub fn ownsPtr(self: Borrowed, ptr: *const anyopaque) bool { return mimalloc.mi_heap_check_owned(self.getMimallocHeap(), ptr); } fn fromOpaque(ptr: *anyopaque) Borrowed { return .{ .#heap = @ptrCast(@alignCast(ptr)) }; } fn getMimallocHeap(self: Borrowed) *mimalloc.Heap { return if (comptime safety_checks) self.#heap.inner else self.#heap; } fn assertThreadLock(self: Borrowed) void { if (comptime safety_checks) self.#heap.thread_lock.assertLocked(); } fn alignedAlloc(self: Borrowed, len: usize, alignment: Alignment) ?[*]u8 { log("Malloc: {d}\n", .{len}); const heap = self.getMimallocHeap(); const ptr: ?*anyopaque = if (mimalloc.mustUseAlignedAlloc(alignment)) mimalloc.mi_heap_malloc_aligned(heap, len, alignment.toByteUnits()) else mimalloc.mi_heap_malloc(heap, len); if (comptime bun.Environment.isDebug) { const usable = mimalloc.mi_malloc_usable_size(ptr); if (usable < len) { std.debug.panic("mimalloc: allocated size is too small: {d} < {d}", .{ usable, len }); } } return if (ptr) |p| @as([*]u8, @ptrCast(p)) else null; } pub fn downcast(std_alloc: std.mem.Allocator) Borrowed { bun.assertf( isInstance(std_alloc), "not a MimallocArena (vtable is {*})", .{std_alloc.vtable}, ); return .fromOpaque(std_alloc.ptr); } }; const BorrowedHeap = if (safety_checks) *DebugHeap else *mimalloc.Heap; const DebugHeap = struct { inner: *mimalloc.Heap, thread_lock: bun.safety.ThreadLock, pub const deinit = void; }; threadlocal var thread_heap: if (safety_checks) ?DebugHeap else void = if (safety_checks) null; fn getThreadHeap() BorrowedHeap { if (comptime !safety_checks) return mimalloc.mi_heap_get_default(); if (thread_heap == null) { thread_heap = .{ .inner = mimalloc.mi_heap_get_default(), .thread_lock = .initLocked(), }; } return &thread_heap.?; } const log = bun.Output.scoped(.mimalloc, .hidden); pub fn allocator(self: Self) std.mem.Allocator { return self.borrow().allocator(); } pub fn borrow(self: Self) Borrowed { return .{ .#heap = if (comptime safety_checks) self.#heap.get() else self.#heap }; } /// Internally, mimalloc calls mi_heap_get_default() /// to get the default heap. /// It uses pthread_getspecific to do that. /// We can save those extra calls if we just do it once in here pub fn getThreadLocalDefault() std.mem.Allocator { if (bun.Environment.enable_asan) return bun.default_allocator; return Borrowed.getDefault().allocator(); } pub fn backingAllocator(_: Self) std.mem.Allocator { return getThreadLocalDefault(); } pub fn dumpThreadStats(_: Self) void { const dump_fn = struct { pub fn dump(textZ: [*:0]const u8, _: ?*anyopaque) callconv(.c) void { const text = bun.span(textZ); bun.Output.errorWriter().writeAll(text) catch {}; } }.dump; mimalloc.mi_thread_stats_print_out(dump_fn, null); bun.Output.flush(); } pub fn dumpStats(_: Self) void { const dump_fn = struct { pub fn dump(textZ: [*:0]const u8, _: ?*anyopaque) callconv(.c) void { const text = bun.span(textZ); bun.Output.errorWriter().writeAll(text) catch {}; } }.dump; mimalloc.mi_stats_print_out(dump_fn, null); bun.Output.flush(); } pub fn deinit(self: *Self) void { const mimalloc_heap = self.borrow().getMimallocHeap(); if (comptime safety_checks) { self.#heap.deinit(); } mimalloc.mi_heap_destroy(mimalloc_heap); self.* = undefined; } pub fn init() Self { const mimalloc_heap = mimalloc.mi_heap_new() orelse bun.outOfMemory(); if (comptime !safety_checks) return .{ .#heap = mimalloc_heap }; const heap: Owned(*DebugHeap) = .new(.{ .inner = mimalloc_heap, .thread_lock = .initLocked(), }); return .{ .#heap = heap }; } pub fn gc(self: Self) void { self.borrow().gc(); } pub fn helpCatchMemoryIssues(self: Self) void { self.borrow().helpCatchMemoryIssues(); } pub fn ownsPtr(self: Self, ptr: *const anyopaque) bool { return self.borrow().ownsPtr(ptr); } fn alignedAllocSize(ptr: [*]u8) usize { return mimalloc.mi_malloc_usable_size(ptr); } fn vtable_alloc(ptr: *anyopaque, len: usize, alignment: Alignment, _: usize) ?[*]u8 { const self: Borrowed = .fromOpaque(ptr); self.assertThreadLock(); return self.alignedAlloc(len, alignment); } fn vtable_resize(ptr: *anyopaque, buf: []u8, _: Alignment, new_len: usize, _: usize) bool { const self: Borrowed = .fromOpaque(ptr); self.assertThreadLock(); return mimalloc.mi_expand(buf.ptr, new_len) != null; } fn vtable_free( _: *anyopaque, buf: []u8, alignment: Alignment, _: usize, ) void { // mi_free_size internally just asserts the size // so it's faster if we don't pass that value through // but its good to have that assertion if (comptime bun.Environment.isDebug) { assert(mimalloc.mi_is_in_heap_region(buf.ptr)); if (mimalloc.mustUseAlignedAlloc(alignment)) mimalloc.mi_free_size_aligned(buf.ptr, buf.len, alignment.toByteUnits()) else mimalloc.mi_free_size(buf.ptr, buf.len); } else { mimalloc.mi_free(buf.ptr); } } /// Attempt to expand or shrink memory, allowing relocation. /// /// `memory.len` must equal the length requested from the most recent /// successful call to `alloc`, `resize`, or `remap`. `alignment` must /// equal the same value that was passed as the `alignment` parameter to /// the original `alloc` call. /// /// A non-`null` return value indicates the resize was successful. The /// allocation may have same address, or may have been relocated. In either /// case, the allocation now has size of `new_len`. A `null` return value /// indicates that the resize would be equivalent to allocating new memory, /// copying the bytes from the old memory, and then freeing the old memory. /// In such case, it is more efficient for the caller to perform the copy. /// /// `new_len` must be greater than zero. /// /// `ret_addr` is optionally provided as the first return address of the /// allocation call stack. If the value is `0` it means no return address /// has been provided. fn vtable_remap(ptr: *anyopaque, buf: []u8, alignment: Alignment, new_len: usize, _: usize) ?[*]u8 { const self: Borrowed = .fromOpaque(ptr); self.assertThreadLock(); const heap = self.getMimallocHeap(); const aligned_size = alignment.toByteUnits(); const value = mimalloc.mi_heap_realloc_aligned(heap, buf.ptr, new_len, aligned_size); return @ptrCast(value); } pub fn isInstance(alloc: std.mem.Allocator) bool { return alloc.vtable == &c_allocator_vtable; } const c_allocator_vtable = std.mem.Allocator.VTable{ .alloc = vtable_alloc, .resize = vtable_resize, .remap = vtable_remap, .free = vtable_free, }; const std = @import("std"); const Alignment = std.mem.Alignment; const bun = @import("bun"); const assert = bun.assert; const mimalloc = bun.mimalloc; const Owned = bun.ptr.Owned; const safety_checks = bun.Environment.ci_assert;