{% callout %} Bun implements the `createHash` and `createHmac` functions from [`node:crypto`](https://nodejs.org/api/crypto.html) in addition to the Bun-native APIs documented below. {% /callout %} ## `Bun.password` `Bun.password` is a collection of utility functions for hashing and verifying passwords with various cryptographically secure algorithms. ```ts const password = "super-secure-pa$$word"; const hash = await Bun.password.hash(password); // => $argon2id$v=19$m=65536,t=2,p=1$tFq+9AVr1bfPxQdh6E8DQRhEXg/M/SqYCNu6gVdRRNs$GzJ8PuBi+K+BVojzPfS5mjnC8OpLGtv8KJqF99eP6a4 const isMatch = await Bun.password.verify(password, hash); // => true ``` The second argument to `Bun.password.hash` accepts a params object that lets you pick and configure the hashing algorithm. ```ts const password = "super-secure-pa$$word"; // use argon2 (default) const argonHash = await Bun.password.hash(password, { algorithm: "argon2id", // "argon2id" | "argon2i" | "argon2d" memoryCost: 4, // memory usage in kibibytes timeCost: 3, // the number of iterations }); // use bcrypt const bcryptHash = await Bun.password.hash(password, { algorithm: "bcrypt", cost: 4, // number between 4-31 }); ``` The algorithm used to create the hash is stored in the hash itself. When using `bcrypt`, the returned hash is encoded in [Modular Crypt Format](https://passlib.readthedocs.io/en/stable/modular_crypt_format.html) for compatibility with most existing `bcrypt` implementations; with `argon2` the result is encoded in the newer [PHC format](https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md). The `verify` function automatically detects the algorithm based on the input hash and use the correct verification method. It can correctly infer the algorithm from both PHC- or MCF-encoded hashes. ```ts const password = "super-secure-pa$$word"; const hash = await Bun.password.hash(password, { /* config */ }); const isMatch = await Bun.password.verify(password, hash); // => true ``` Synchronous versions of all functions are also available. Keep in mind that these functions are computationally expensive, so using a blocking API may degrade application performance. ```ts const password = "super-secure-pa$$word"; const hash = Bun.password.hashSync(password, { /* config */ }); const isMatch = Bun.password.verifySync(password, hash); // => true ``` ### Salt When you use `Bun.password.hash`, a salt is automatically generated and included in the hash. ### bcrypt - Modular Crypt Format In the following [Modular Crypt Format](https://passlib.readthedocs.io/en/stable/modular_crypt_format.html) hash (used by `bcrypt`): Input: ```ts await Bun.password.hash("hello", { algorithm: "bcrypt", }); ``` Output: ```sh $2b$10$Lyj9kHYZtiyfxh2G60TEfeqs7xkkGiEFFDi3iJGc50ZG/XJ1sxIFi; ``` The format is composed of: - `bcrypt`: `$2b` - `rounds`: `$10` - rounds (log10 of the actual number of rounds) - `salt`: `$Lyj9kHYZtiyfxh2G60TEfeqs7xkkGiEFFDi3iJGc50ZG/XJ1sxIFi` - `hash`: `$GzJ8PuBi+K+BVojzPfS5mjnC8OpLGtv8KJqF99eP6a4` By default, the bcrypt library truncates passwords longer than 72 bytes. In Bun, if you pass `Bun.password.hash` a password longer than 72 bytes and use the `bcrypt` algorithm, the password will be hashed via SHA-512 before being passed to bcrypt. ```ts await Bun.password.hash("hello".repeat(100), { algorithm: "bcrypt", }); ``` So instead of sending bcrypt a 500-byte password silently truncated to 72 bytes, Bun will hash the password using SHA-512 and send the hashed password to bcrypt (only if it exceeds 72 bytes). This is a more secure default behavior. ### argon2 - PHC format In the following [PHC format](https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md) hash (used by `argon2`): Input: ```ts await Bun.password.hash("hello", { algorithm: "argon2id", }); ``` Output: ```sh $argon2id$v=19$m=65536,t=2,p=1$xXnlSvPh4ym5KYmxKAuuHVlDvy2QGHBNuI6bJJrRDOs$2YY6M48XmHn+s5NoBaL+ficzXajq2Yj8wut3r0vnrwI ``` The format is composed of: - `algorithm`: `$argon2id` - `version`: `$v=19` - `memory cost`: `65536` - `iterations`: `t=2` - `parallelism`: `p=1` - `salt`: `$xXnlSvPh4ym5KYmxKAuuHVlDvy2QGHBNuI6bJJrRDOs` - `hash`: `$2YY6M48XmHn+s5NoBaL+ficzXajq2Yj8wut3r0vnrwI` ## `Bun.hash` `Bun.hash` is a collection of utilities for _non-cryptographic_ hashing. Non-cryptographic hashing algorithms are optimized for speed of computation over collision-resistance or security. The standard `Bun.hash` functions uses [Wyhash](https://github.com/wangyi-fudan/wyhash) to generate a 64-bit hash from an input of arbitrary size. ```ts Bun.hash("some data here"); // 11562320457524636935n ``` The input can be a string, `TypedArray`, `DataView`, `ArrayBuffer`, or `SharedArrayBuffer`. ```ts const arr = new Uint8Array([1, 2, 3, 4]); Bun.hash("some data here"); Bun.hash(arr); Bun.hash(arr.buffer); Bun.hash(new DataView(arr.buffer)); ``` Optionally, an integer seed can be specified as the second parameter. For 64-bit hashes seeds above `Number.MAX_SAFE_INTEGER` should be given as BigInt to avoid loss of precision. ```ts Bun.hash("some data here", 1234); // 15724820720172937558n ``` Additional hashing algorithms are available as properties on `Bun.hash`. The API is the same for each, only changing the return type from number for 32-bit hashes to bigint for 64-bit hashes. ```ts Bun.hash.wyhash("data", 1234); // equivalent to Bun.hash() Bun.hash.crc32("data", 1234); Bun.hash.adler32("data", 1234); Bun.hash.cityHash32("data", 1234); Bun.hash.cityHash64("data", 1234); Bun.hash.xxHash32("data", 1234); Bun.hash.xxHash64("data", 1234); Bun.hash.xxHash3("data", 1234); Bun.hash.murmur32v3("data", 1234); Bun.hash.murmur32v2("data", 1234); Bun.hash.murmur64v2("data", 1234); Bun.hash.rapidhash("data", 1234); ``` ## `Bun.CryptoHasher` `Bun.CryptoHasher` is a general-purpose utility class that lets you incrementally compute a hash of string or binary data using a range of cryptographic hash algorithms. The following algorithms are supported: - `"blake2b256"` - `"blake2b512"` - `"md4"` - `"md5"` - `"ripemd160"` - `"sha1"` - `"sha224"` - `"sha256"` - `"sha384"` - `"sha512"` - `"sha512-224"` - `"sha512-256"` - `"sha3-224"` - `"sha3-256"` - `"sha3-384"` - `"sha3-512"` - `"shake128"` - `"shake256"` ```ts const hasher = new Bun.CryptoHasher("sha256"); hasher.update("hello world"); hasher.digest(); // Uint8Array(32) [ , , ... ] ``` Once initialized, data can be incrementally fed to to the hasher using `.update()`. This method accepts `string`, `TypedArray`, and `ArrayBuffer`. ```ts const hasher = new Bun.CryptoHasher("sha256"); hasher.update("hello world"); hasher.update(new Uint8Array([1, 2, 3])); hasher.update(new ArrayBuffer(10)); ``` If a `string` is passed, an optional second parameter can be used to specify the encoding (default `'utf-8'`). The following encodings are supported: {% table %} --- - Binary encodings - `"base64"` `"base64url"` `"hex"` `"binary"` --- - Character encodings - `"utf8"` `"utf-8"` `"utf16le"` `"latin1"` --- - Legacy character encodings - `"ascii"` `"binary"` `"ucs2"` `"ucs-2"` {% /table %} ```ts hasher.update("hello world"); // defaults to utf8 hasher.update("hello world", "hex"); hasher.update("hello world", "base64"); hasher.update("hello world", "latin1"); ``` After the data has been feed into the hasher, a final hash can be computed using `.digest()`. By default, this method returns a `Uint8Array` containing the hash. ```ts const hasher = new Bun.CryptoHasher("sha256"); hasher.update("hello world"); hasher.digest(); // => Uint8Array(32) [ 185, 77, 39, 185, 147, ... ] ``` The `.digest()` method can optionally return the hash as a string. To do so, specify an encoding: ```ts hasher.digest("base64"); // => "uU0nuZNNPgilLlLX2n2r+sSE7+N6U4DukIj3rOLvzek=" hasher.digest("hex"); // => "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" ``` Alternatively, the method can write the hash into a pre-existing `TypedArray` instance. This may be desirable in some performance-sensitive applications. ```ts const arr = new Uint8Array(32); hasher.digest(arr); console.log(arr); // => Uint8Array(32) [ 185, 77, 39, 185, 147, ... ] ``` ### HMAC in `Bun.CryptoHasher` `Bun.CryptoHasher` can be used to compute HMAC digests. To do so, pass the key to the constructor. ```ts const hasher = new Bun.CryptoHasher("sha256", "secret-key"); hasher.update("hello world"); console.log(hasher.digest("hex")); // => "095d5a21fe6d0646db223fdf3de6436bb8dfb2fab0b51677ecf6441fcf5f2a67" ``` When using HMAC, a more limited set of algorithms are supported: - `"blake2b512"` - `"md5"` - `"sha1"` - `"sha224"` - `"sha256"` - `"sha384"` - `"sha512-224"` - `"sha512-256"` - `"sha512"` Unlike the non-HMAC `Bun.CryptoHasher`, the HMAC `Bun.CryptoHasher` instance is not reset after `.digest()` is called, and attempting to use the same instance again will throw an error. Other methods like `.copy()` and `.update()` are supported (as long as it's before `.digest()`), but methods like `.digest()` that finalize the hasher are not. ```ts const hasher = new Bun.CryptoHasher("sha256", "secret-key"); hasher.update("hello world"); const copy = hasher.copy(); copy.update("!"); console.log(copy.digest("hex")); // => "3840176c3d8923f59ac402b7550404b28ab11cb0ef1fa199130a5c37864b5497" console.log(hasher.digest("hex")); // => "095d5a21fe6d0646db223fdf3de6436bb8dfb2fab0b51677ecf6441fcf5f2a67" ``` ## Individual Hash Algorithm Classes In addition to the generic `Bun.CryptoHasher`, Bun provides individual classes for each supported hash algorithm. These offer a more direct API and can be slightly more performant for specific use cases. ### Available Hash Classes The following individual hash classes are available: - `Bun.MD4` - MD4 hash algorithm (16 bytes) - `Bun.MD5` - MD5 hash algorithm (16 bytes) - `Bun.SHA1` - SHA-1 hash algorithm (20 bytes) - `Bun.SHA224` - SHA-224 hash algorithm (28 bytes) - `Bun.SHA256` - SHA-256 hash algorithm (32 bytes) - `Bun.SHA384` - SHA-384 hash algorithm (48 bytes) - `Bun.SHA512` - SHA-512 hash algorithm (64 bytes) - `Bun.SHA512_256` - SHA-512/256 hash algorithm (32 bytes) ### Instance Methods Each hash class provides the same interface: ```ts // Create a new hasher instance const hasher = new Bun.SHA256(); // Update with data (can be called multiple times) hasher.update("hello"); hasher.update(" world"); // Get the final hash const hash = hasher.digest("hex"); console.log(hash); // => "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" ``` The `.update()` method accepts strings, `TypedArray`, `ArrayBuffer`, and `Blob` objects: ```ts const hasher = new Bun.SHA256(); hasher.update("hello"); hasher.update(new Uint8Array([32, 119, 111, 114, 108, 100])); // " world" hasher.update(new ArrayBuffer(1)); const result = hasher.digest("hex"); ``` The `.digest()` method can return the hash in different formats: ```ts const hasher = new Bun.SHA256(); hasher.update("hello world"); // As a Uint8Array (default) const bytes = hasher.digest(); // As a hex string const hex = hasher.digest("hex"); // As a base64 string const base64 = hasher.digest("base64"); // As a base64url string const base64url = hasher.digest("base64url"); // Write directly into a TypedArray (more efficient) const buffer = new Uint8Array(32); hasher.digest(buffer); ``` {% callout %} **Important**: Once `.digest()` is called on a hasher instance, it cannot be reused. Calling `.update()` or `.digest()` again will throw an error. Create a new instance for each hash operation. {% /callout %} ### Static Methods Each hash class also provides a static `.hash()` method for one-shot hashing: ```ts // Hash a string and return as hex const hex = Bun.SHA256.hash("hello world", "hex"); // => "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" // Hash and return as Uint8Array const bytes = Bun.SHA256.hash("hello world"); // Hash directly into a buffer (most efficient) const buffer = new Uint8Array(32); Bun.SHA256.hash("hello world", buffer); ``` ### Properties Each hash class has a static `byteLength` property indicating the output size: ```ts console.log(Bun.SHA256.byteLength); // => 32 console.log(Bun.SHA1.byteLength); // => 20 console.log(Bun.MD5.byteLength); // => 16 ``` ### Security Considerations {% callout type="warning" %} **Legacy Algorithms**: MD4, MD5, and SHA1 are considered cryptographically broken and should not be used for security-sensitive applications. They are provided for compatibility with legacy systems only. - **MD4**: Severely broken, avoid entirely - **MD5**: Vulnerable to collision attacks, suitable only for checksums - **SHA1**: Deprecated due to collision vulnerabilities, avoid for new applications For new applications, use SHA-256 or higher. {% /callout %} ### Performance Characteristics The individual hash classes are optimized for performance: - **SHA-256**: Excellent balance of security and performance, recommended for most use cases - **SHA-512**: Faster than SHA-256 on 64-bit systems, larger output - **SHA-384**: Truncated SHA-512, good compromise between SHA-256 and SHA-512 - **SHA-224**: Truncated SHA-256, smaller output when space is constrained - **SHA-512/256**: Modern variant of SHA-512 with 256-bit output ### Examples #### Basic Usage ```ts // Using instance methods for incremental hashing const hasher = new Bun.SHA256(); hasher.update("The quick brown fox "); hasher.update("jumps over the lazy dog"); const hash = hasher.digest("hex"); // Using static method for one-shot hashing const quickHash = Bun.SHA256.hash("The quick brown fox jumps over the lazy dog", "hex"); // Both produce the same result console.log(hash === quickHash); // => true ``` #### Hashing Large Data ```ts // For large data, use the static method or write into a buffer const data = new Uint8Array(1024 * 1024); // 1MB of data crypto.getRandomValues(data); // Method 1: Static method const hash1 = Bun.SHA256.hash(data, "hex"); // Method 2: Write into existing buffer (avoids allocation) const output = new Uint8Array(32); Bun.SHA256.hash(data, output); const hash2 = Array.from(output, byte => byte.toString(16).padStart(2, '0')).join(''); console.log(hash1 === hash2); // => true ``` #### Algorithm Comparison ```ts const data = "hello world"; console.log("MD5: ", Bun.MD5.hash(data, "hex")); // 16 bytes console.log("SHA1: ", Bun.SHA1.hash(data, "hex")); // 20 bytes console.log("SHA224: ", Bun.SHA224.hash(data, "hex")); // 28 bytes console.log("SHA256: ", Bun.SHA256.hash(data, "hex")); // 32 bytes console.log("SHA384: ", Bun.SHA384.hash(data, "hex")); // 48 bytes console.log("SHA512: ", Bun.SHA512.hash(data, "hex")); // 64 bytes console.log("SHA512/256: ", Bun.SHA512_256.hash(data, "hex")); // 32 bytes ```