const std = @import("std"); const bun = @import("root").bun; pub usingnamespace std.meta; pub fn OptionalChild(comptime T: type) type { const tyinfo = @typeInfo(T); if (tyinfo != .Pointer) @compileError("OptionalChild(T) requires that T be a pointer to an optional type."); const child = @typeInfo(tyinfo.Pointer.child); if (child != .Optional) @compileError("OptionalChild(T) requires that T be a pointer to an optional type."); return child.Optional.child; } pub fn EnumFields(comptime T: type) []const std.builtin.Type.EnumField { const tyinfo = @typeInfo(T); return switch (tyinfo) { .Union => std.meta.fields(tyinfo.Union.tag_type.?), .Enum => tyinfo.Enum.fields, else => { @compileError("Used `EnumFields(T)` on a type that is not an `enum` or a `union(enum)`"); }, }; } pub fn ReturnOfMaybe(comptime function: anytype) type { const Func = @TypeOf(function); const typeinfo: std.builtin.Type.Fn = @typeInfo(Func).Fn; const MaybeType = typeinfo.return_type orelse @compileError("Expected the function to have a return type"); return MaybeResult(MaybeType); } pub fn MaybeResult(comptime MaybeType: type) type { const maybe_ty_info = @typeInfo(MaybeType); const maybe = maybe_ty_info.Union; if (maybe.fields.len != 2) @compileError("Expected the Maybe type to be a union(enum) with two variants"); if (!std.mem.eql(u8, maybe.fields[0].name, "err")) { @compileError("Expected the first field of the Maybe type to be \"err\", got: " ++ maybe.fields[0].name); } if (!std.mem.eql(u8, maybe.fields[1].name, "result")) { @compileError("Expected the second field of the Maybe type to be \"result\"" ++ maybe.fields[1].name); } return maybe.fields[1].type; } pub fn ReturnOf(comptime function: anytype) type { return ReturnOfType(@TypeOf(function)); } pub fn ReturnOfType(comptime Type: type) type { const typeinfo: std.builtin.Type.Fn = @typeInfo(Type).Fn; return typeinfo.return_type orelse void; } pub fn typeName(comptime Type: type) []const u8 { const name = @typeName(Type); return typeBaseName(name); } /// partially emulates behaviour of @typeName in previous Zig versions, /// converting "some.namespace.MyType" to "MyType" pub fn typeBaseName(comptime fullname: [:0]const u8) [:0]const u8 { // leave type name like "namespace.WrapperType(namespace.MyType)" as it is const baseidx = comptime std.mem.indexOf(u8, fullname, "("); if (baseidx != null) return fullname; const idx = comptime std.mem.lastIndexOf(u8, fullname, "."); const name = if (idx == null) fullname else fullname[(idx.? + 1)..]; return comptime std.fmt.comptimePrint("{s}", .{name}); } pub fn enumFieldNames(comptime Type: type) []const []const u8 { var names: [std.meta.fields(Type).len][]const u8 = std.meta.fieldNames(Type).*; var i: usize = 0; for (names) |name| { // zig seems to include "_" or an empty string in the list of enum field names // it makes sense, but humans don't want that if (bun.strings.eqlAnyComptime(name, &.{ "_none", "", "_" })) { continue; } names[i] = name; i += 1; } return names[0..i]; } pub fn banFieldType(comptime Container: type, comptime T: type) void { comptime { for (std.meta.fields(Container)) |field| { if (field.type == T) { @compileError(std.fmt.comptimePrint(typeName(T) ++ " field \"" ++ field.name ++ "\" not allowed in " ++ typeName(Container), .{})); } } } } // []T -> T // *const T -> T // *[n]T -> T pub fn Item(comptime T: type) type { switch (@typeInfo(T)) { .Pointer => |ptr| { if (ptr.size == .One) { switch (@typeInfo(ptr.child)) { .Array => |array| { return array.child; }, else => {}, } } return ptr.child; }, else => return std.meta.Child(T), } } /// Returns .{a, ...args_} pub fn ConcatArgs1( comptime func: anytype, a: anytype, args_: anytype, ) std.meta.ArgsTuple(@TypeOf(func)) { var args: std.meta.ArgsTuple(@TypeOf(func)) = undefined; args[0] = a; inline for (args_, 1..) |arg, i| { args[i] = arg; } return args; } /// Returns .{a, b, ...args_} pub inline fn ConcatArgs2( comptime func: anytype, a: anytype, b: anytype, args_: anytype, ) std.meta.ArgsTuple(@TypeOf(func)) { var args: std.meta.ArgsTuple(@TypeOf(func)) = undefined; args[0] = a; args[1] = b; inline for (args_, 2..) |arg, i| { args[i] = arg; } return args; } /// Returns .{a, b, c, d, ...args_} pub inline fn ConcatArgs4( comptime func: anytype, a: anytype, b: anytype, c: anytype, d: anytype, args_: anytype, ) std.meta.ArgsTuple(@TypeOf(func)) { var args: std.meta.ArgsTuple(@TypeOf(func)) = undefined; args[0] = a; args[1] = b; args[2] = c; args[3] = d; inline for (args_, 4..) |arg, i| { args[i] = arg; } return args; } // Copied from std.meta fn CreateUniqueTuple(comptime N: comptime_int, comptime types: [N]type) type { var tuple_fields: [types.len]std.builtin.Type.StructField = undefined; inline for (types, 0..) |T, i| { @setEvalBranchQuota(10_000); var num_buf: [128]u8 = undefined; tuple_fields[i] = .{ .name = std.fmt.bufPrintZ(&num_buf, "{d}", .{i}) catch unreachable, .type = T, .default_value = null, .is_comptime = false, .alignment = if (@sizeOf(T) > 0) @alignOf(T) else 0, }; } return @Type(.{ .Struct = .{ .is_tuple = true, .layout = .auto, .decls = &.{}, .fields = &tuple_fields, }, }); } pub fn hasStableMemoryLayout(comptime T: type) bool { const tyinfo = @typeInfo(T); return switch (tyinfo) { .Type => true, .Void => true, .Bool => true, .Int => true, .Float => true, .Enum => { // not supporting this rn if (tyinfo.Enum.is_exhaustive) return false; return hasStableMemoryLayout(tyinfo.Enum.tag_type); }, .Struct => switch (tyinfo.Struct.layout) { .auto => { inline for (tyinfo.Struct.fields) |field| { if (!hasStableMemoryLayout(field.field_type)) return false; } return true; }, .@"extern" => true, .@"packed" => false, }, .Union => switch (tyinfo.Union.layout) { .auto => { if (tyinfo.Union.tag_type == null or !hasStableMemoryLayout(tyinfo.Union.tag_type.?)) return false; inline for (tyinfo.Union.fields) |field| { if (!hasStableMemoryLayout(field.type)) return false; } return true; }, .@"extern" => true, .@"packed" => false, }, else => true, }; } pub fn isSimpleCopyType(comptime T: type) bool { const tyinfo = @typeInfo(T); return switch (tyinfo) { .Void => true, .Bool => true, .Int => true, .Float => true, .Enum => true, .Struct => { inline for (tyinfo.Struct.fields) |field| { if (!isSimpleCopyType(field.type)) return false; } return true; }, .Union => { inline for (tyinfo.Union.fields) |field| { if (!isSimpleCopyType(field.type)) return false; } return true; }, .Optional => return isSimpleCopyType(tyinfo.Optional.child), else => false, }; } pub fn isScalar(comptime T: type) bool { return switch (T) { i32, u32, i64, u64, f32, f64, bool => true, else => { const tyinfo = @typeInfo(T); if (tyinfo == .Enum) return true; return false; }, }; } pub fn isSimpleEqlType(comptime T: type) bool { const tyinfo = @typeInfo(T); return switch (tyinfo) { .Type => true, .Void => true, .Bool => true, .Int => true, .Float => true, .Enum => true, else => false, }; } pub const ListContainerType = enum { array_list, baby_list, small_list, }; pub fn looksLikeListContainerType(comptime T: type) ?struct { list: ListContainerType, child: type } { const tyinfo = @typeInfo(T); if (tyinfo == .Struct) { // Looks like array list if (tyinfo.Struct.fields.len == 2 and std.mem.eql(u8, tyinfo.Struct.fields[0].name, "items") and std.mem.eql(u8, tyinfo.Struct.fields[1].name, "capacity")) return .{ .list = .array_list, .child = std.meta.Child(tyinfo.Struct.fields[0].type) }; // Looks like babylist if (tyinfo.Struct.fields.len == 3 and std.mem.eql(u8, tyinfo.Struct.fields[0].name, "ptr") and std.mem.eql(u8, tyinfo.Struct.fields[1].name, "len") and std.mem.eql(u8, tyinfo.Struct.fields[2].name, "cap")) return .{ .list = .baby_list, .child = std.meta.Child(tyinfo.Struct.fields[0].type) }; // Looks like SmallList if (tyinfo.Struct.fields.len == 2 and std.mem.eql(u8, tyinfo.Struct.fields[0].name, "capacity") and std.mem.eql(u8, tyinfo.Struct.fields[1].name, "data")) return .{ .list = .small_list, .child = std.meta.Child( @typeInfo(tyinfo.Struct.fields[1].type).Union.fields[0].type, ), }; } return null; }