Files
bun.sh/src/allocators/LinuxMemFdAllocator.zig
taylor.fish 07cd45deae Refactor Zig imports and file structure (part 1) (#21270)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2025-07-22 17:51:38 -07:00

190 lines
5.4 KiB
Zig

//! When cloning large amounts of data potentially multiple times, we can
//! leverage copy-on-write memory to avoid actually copying the data. To do that
//! on Linux, we need to use a memfd, which is a Linux-specific feature.
//!
//! The steps are roughly:
//!
//! 1. Create a memfd
//! 2. Write the data to the memfd
//! 3. Map the memfd into memory
//!
//! Then, to clone the data later, we can just call `mmap` again.
//!
//! The big catch is that mmap(), memfd_create(), write() all have overhead. And
//! often we will re-use virtual memory within the process. This does not reuse
//! the virtual memory. So we should only really use this for large blobs of
//! data that we expect to be cloned multiple times. Such as Blob in FormData.
const Self = @This();
const RefCount = bun.ptr.ThreadSafeRefCount(@This(), "ref_count", deinit, .{});
pub const new = bun.TrivialNew(@This());
pub const ref = RefCount.ref;
pub const deref = RefCount.deref;
ref_count: RefCount,
fd: bun.FileDescriptor = .invalid,
size: usize = 0,
var memfd_counter = std.atomic.Value(usize).init(0);
fn deinit(self: *Self) void {
self.fd.close();
bun.destroy(self);
}
pub fn allocator(self: *Self) std.mem.Allocator {
return .{
.ptr = self,
.vtable = AllocatorInterface.VTable,
};
}
pub fn from(allocator_: std.mem.Allocator) ?*Self {
if (allocator_.vtable == AllocatorInterface.VTable) {
return @alignCast(@ptrCast(allocator_.ptr));
}
return null;
}
const AllocatorInterface = struct {
fn alloc(_: *anyopaque, _: usize, _: std.mem.Alignment, _: usize) ?[*]u8 {
// it should perform no allocations or resizes
return null;
}
fn free(
ptr: *anyopaque,
buf: []u8,
_: std.mem.Alignment,
_: usize,
) void {
var self: *Self = @alignCast(@ptrCast(ptr));
defer self.deref();
bun.sys.munmap(@alignCast(@ptrCast(buf))).unwrap() catch |err| {
bun.Output.debugWarn("Failed to munmap memfd: {}", .{err});
};
}
pub const VTable = &std.mem.Allocator.VTable{
.alloc = &AllocatorInterface.alloc,
.resize = &std.mem.Allocator.noResize,
.remap = &std.mem.Allocator.noRemap,
.free = &free,
};
};
pub fn alloc(self: *Self, len: usize, offset: usize, flags: std.posix.MAP) bun.jsc.Maybe(bun.webcore.Blob.Store.Bytes) {
var size = len;
// size rounded up to nearest page
size = std.mem.alignForward(usize, size, std.heap.pageSize());
var flags_mut = flags;
flags_mut.TYPE = .SHARED;
switch (bun.sys.mmap(
null,
@min(size, self.size),
std.posix.PROT.READ | std.posix.PROT.WRITE,
flags_mut,
self.fd,
offset,
)) {
.result => |slice| {
return .{
.result = bun.webcore.Blob.Store.Bytes{
.cap = @truncate(slice.len),
.ptr = slice.ptr,
.len = @truncate(len),
.allocator = self.allocator(),
},
};
},
.err => |errno| {
return .{ .err = errno };
},
}
}
pub fn shouldUse(bytes: []const u8) bool {
if (comptime !bun.Environment.isLinux) {
return false;
}
if (bun.jsc.VirtualMachine.is_smol_mode) {
return bytes.len >= 1024 * 1024 * 1;
}
// This is a net 2x - 4x slowdown to new Blob([huge])
// so we must be careful
return bytes.len >= 1024 * 1024 * 8;
}
pub fn create(bytes: []const u8) bun.jsc.Maybe(bun.webcore.Blob.Store.Bytes) {
if (comptime !bun.Environment.isLinux) {
unreachable;
}
var label_buf: [128]u8 = undefined;
const label = std.fmt.bufPrintZ(&label_buf, "memfd-num-{d}", .{memfd_counter.fetchAdd(1, .monotonic)}) catch "";
// Using huge pages was slower.
const fd = switch (bun.sys.memfd_create(label, std.os.linux.MFD.CLOEXEC)) {
.err => |err| return .{ .err = bun.sys.Error.fromCode(err.getErrno(), .open) },
.result => |fd| fd,
};
if (bytes.len > 0)
// Hint at the size of the file
_ = bun.sys.ftruncate(fd, @intCast(bytes.len));
// Dump all the bytes in there
var written: isize = 0;
var remain = bytes;
while (remain.len > 0) {
switch (bun.sys.pwrite(fd, remain, written)) {
.err => |err| {
if (err.getErrno() == .AGAIN) {
continue;
}
bun.Output.debugWarn("Failed to write to memfd: {}", .{err});
fd.close();
return .{ .err = err };
},
.result => |result| {
if (result == 0) {
bun.Output.debugWarn("Failed to write to memfd: EOF", .{});
fd.close();
return .{ .err = bun.sys.Error.fromCode(.NOMEM, .write) };
}
written += @intCast(result);
remain = remain[result..];
},
}
}
var linux_memfd_allocator = Self.new(.{
.fd = fd,
.ref_count = .init(),
.size = bytes.len,
});
switch (linux_memfd_allocator.alloc(bytes.len, 0, .{ .TYPE = .SHARED })) {
.result => |res| {
return .{ .result = res };
},
.err => |err| {
linux_memfd_allocator.deref();
return .{ .err = err };
},
}
}
const bun = @import("bun");
const std = @import("std");