Files
bun.sh/.cursor/rules/zig-javascriptcore-classes.mdc
2025-07-06 21:08:26 -07:00

510 lines
16 KiB
Plaintext

---
description: How Zig works with JavaScriptCore bindings generator
globs:
alwaysApply: false
---
# Bun's JavaScriptCore Class Bindings Generator
This document explains how Bun's class bindings generator works to bridge Zig and JavaScript code through JavaScriptCore (JSC).
## Architecture Overview
Bun's binding system creates a seamless bridge between JavaScript and Zig, allowing Zig implementations to be exposed as JavaScript classes. The system has several key components:
1. **Zig Implementation** (.zig files)
2. **JavaScript Interface Definition** (.classes.ts files)
3. **Generated Code** (C++/Zig files that connect everything)
## Class Definition Files
### JavaScript Interface (.classes.ts)
The `.classes.ts` files define the JavaScript API using a declarative approach:
```typescript
// Example: encoding.classes.ts
define({
name: "TextDecoder",
constructor: true,
JSType: "object",
finalize: true,
proto: {
decode: {
// Function definition
args: 1,
},
encoding: {
// Getter with caching
getter: true,
cache: true,
},
fatal: {
// Read-only property
getter: true,
},
ignoreBOM: {
// Read-only property
getter: true,
},
},
});
```
Each class definition specifies:
- The class name
- Whether it has a constructor
- JavaScript type (object, function, etc.)
- Properties and methods in the `proto` field
- Caching strategy for properties
- Finalization requirements
### Zig Implementation (.zig)
The Zig files implement the native functionality:
```zig
// Example: TextDecoder.zig
pub const TextDecoder = struct {
// Expose generated bindings as `js` namespace with trait conversion methods
pub const js = JSC.Codegen.JSTextDecoder;
pub const toJS = js.toJS;
pub const fromJS = js.fromJS;
pub const fromJSDirect = js.fromJSDirect;
// Internal state
encoding: []const u8,
fatal: bool,
ignoreBOM: bool,
// Constructor implementation - note use of globalObject
pub fn constructor(
globalObject: *JSGlobalObject,
callFrame: *JSC.CallFrame,
) bun.JSError!*TextDecoder {
// Implementation
return bun.new(TextDecoder, .{
// Fields
});
}
// Prototype methods - note return type includes JSError
pub fn decode(
this: *TextDecoder,
globalObject: *JSGlobalObject,
callFrame: *JSC.CallFrame,
) bun.JSError!JSC.JSValue {
// Implementation
}
// Getters
pub fn getEncoding(this: *TextDecoder, globalObject: *JSGlobalObject) JSC.JSValue {
return JSC.JSValue.createStringFromUTF8(globalObject, this.encoding);
}
pub fn getFatal(this: *TextDecoder, globalObject: *JSGlobalObject) JSC.JSValue {
return JSC.JSValue.jsBoolean(this.fatal);
}
// Cleanup - note standard pattern of using deinit/deref
fn deinit(this: *TextDecoder) void {
// Release any retained resources
// Free the pointer at the end.
bun.destroy(this);
}
// Finalize - called by JS garbage collector. This should call deinit, or deref if reference counted.
pub fn finalize(this: *TextDecoder) void {
this.deinit();
}
};
```
Key components in the Zig file:
- The struct containing native state
- `pub const js = JSC.Codegen.JS<ClassName>` to include generated code
- Constructor and methods using `bun.JSError!JSValue` return type for proper error handling
- Consistent use of `globalObject` parameter name instead of `ctx`
- Methods matching the JavaScript interface
- Getters/setters for properties
- Proper resource cleanup pattern with `deinit()` and `finalize()`
- Update `src/bun.js/bindings/generated_classes_list.zig` to include the new class
## Code Generation System
The binding generator produces C++ code that connects JavaScript and Zig:
1. **JSC Class Structure**: Creates C++ classes for the JS object, prototype, and constructor
2. **Memory Management**: Handles GC integration through JSC's WriteBarrier
3. **Method Binding**: Connects JS function calls to Zig implementations
4. **Type Conversion**: Converts between JS values and Zig types
5. **Property Caching**: Implements the caching system for properties
The generated C++ code includes:
- A JSC wrapper class (`JSTextDecoder`)
- A prototype class (`JSTextDecoderPrototype`)
- A constructor function (`JSTextDecoderConstructor`)
- Function bindings (`TextDecoderPrototype__decodeCallback`)
- Property getters/setters (`TextDecoderPrototype__encodingGetterWrap`)
## CallFrame Access
The `CallFrame` object provides access to JavaScript execution context:
```zig
pub fn decode(
this: *TextDecoder,
globalObject: *JSGlobalObject,
callFrame: *JSC.CallFrame
) bun.JSError!JSC.JSValue {
// Get arguments
const input = callFrame.argument(0);
const options = callFrame.argument(1);
// Get this value
const thisValue = callFrame.thisValue();
// Implementation with error handling
if (input.isUndefinedOrNull()) {
return globalObject.throw("Input cannot be null or undefined", .{});
}
// Return value or throw error
return JSC.JSValue.jsString(globalObject, "result");
}
```
CallFrame methods include:
- `argument(i)`: Get the i-th argument
- `argumentCount()`: Get the number of arguments
- `thisValue()`: Get the `this` value
- `callee()`: Get the function being called
## Property Caching and GC-Owned Values
The `cache: true` option in property definitions enables JSC's WriteBarrier to efficiently store values:
```typescript
encoding: {
getter: true,
cache: true, // Enable caching
}
```
### C++ Implementation
In the generated C++ code, caching uses JSC's WriteBarrier:
```cpp
JSC_DEFINE_CUSTOM_GETTER(TextDecoderPrototype__encodingGetterWrap, (...)) {
auto& vm = JSC::getVM(lexicalGlobalObject);
Zig::GlobalObject *globalObject = reinterpret_cast<Zig::GlobalObject*>(lexicalGlobalObject);
auto throwScope = DECLARE_THROW_SCOPE(vm);
JSTextDecoder* thisObject = jsCast<JSTextDecoder*>(JSValue::decode(encodedThisValue));
JSC::EnsureStillAliveScope thisArg = JSC::EnsureStillAliveScope(thisObject);
// Check for cached value and return if present
if (JSValue cachedValue = thisObject->m_encoding.get())
return JSValue::encode(cachedValue);
// Get value from Zig implementation
JSC::JSValue result = JSC::JSValue::decode(
TextDecoderPrototype__getEncoding(thisObject->wrapped(), globalObject)
);
RETURN_IF_EXCEPTION(throwScope, {});
// Store in cache for future access
thisObject->m_encoding.set(vm, thisObject, result);
RELEASE_AND_RETURN(throwScope, JSValue::encode(result));
}
```
### Zig Accessor Functions
For each cached property, the generator creates Zig accessor functions that allow Zig code to work with these GC-owned values:
```zig
// External function declarations
extern fn TextDecoderPrototype__encodingSetCachedValue(JSC.JSValue, *JSC.JSGlobalObject, JSC.JSValue) callconv(JSC.conv) void;
extern fn TextDecoderPrototype__encodingGetCachedValue(JSC.JSValue) callconv(JSC.conv) JSC.JSValue;
/// `TextDecoder.encoding` setter
/// This value will be visited by the garbage collector.
pub fn encodingSetCached(thisValue: JSC.JSValue, globalObject: *JSC.JSGlobalObject, value: JSC.JSValue) void {
JSC.markBinding(@src());
TextDecoderPrototype__encodingSetCachedValue(thisValue, globalObject, value);
}
/// `TextDecoder.encoding` getter
/// This value will be visited by the garbage collector.
pub fn encodingGetCached(thisValue: JSC.JSValue) ?JSC.JSValue {
JSC.markBinding(@src());
const result = TextDecoderPrototype__encodingGetCachedValue(thisValue);
if (result == .zero)
return null;
return result;
}
```
### Benefits of GC-Owned Values
This system provides several key benefits:
1. **Automatic Memory Management**: The JavaScriptCore GC tracks and manages these values
2. **Proper Garbage Collection**: The WriteBarrier ensures values are properly visited during GC
3. **Consistent Access**: Zig code can easily get/set these cached JS values
4. **Performance**: Cached values avoid repeated computation or serialization
### Use Cases
GC-owned cached values are particularly useful for:
1. **Computed Properties**: Store expensive computation results
2. **Lazily Created Objects**: Create objects only when needed, then cache them
3. **References to Other Objects**: Store references to other JS objects that need GC tracking
4. **Memoization**: Cache results based on input parameters
The WriteBarrier mechanism ensures that any JS values stored in this way are properly tracked by the garbage collector.
## Memory Management and Finalization
The binding system handles memory management across the JavaScript/Zig boundary:
1. **Object Creation**: JavaScript `new TextDecoder()` creates both a JS wrapper and a Zig struct
2. **Reference Tracking**: JSC's GC tracks all JS references to the object
3. **Finalization**: When the JS object is collected, the finalizer releases Zig resources
Bun uses a consistent pattern for resource cleanup:
```zig
// Resource cleanup method - separate from finalization
pub fn deinit(this: *TextDecoder) void {
// Release resources like strings
this._encoding.deref(); // String deref pattern
// Free any buffers
if (this.buffer) |buffer| {
bun.default_allocator.free(buffer);
}
}
// Called by the GC when object is collected
pub fn finalize(this: *TextDecoder) void {
JSC.markBinding(@src()); // For debugging
this.deinit(); // Clean up resources
bun.default_allocator.destroy(this); // Free the object itself
}
```
Some objects that hold references to other JS objects use `.deref()` instead:
```zig
pub fn finalize(this: *SocketAddress) void {
JSC.markBinding(@src());
this._presentation.deref(); // Release references
this.destroy();
}
```
## Error Handling with JSError
Bun uses `bun.JSError!JSValue` return type for proper error handling:
```zig
pub fn decode(
this: *TextDecoder,
globalObject: *JSGlobalObject,
callFrame: *JSC.CallFrame
) bun.JSError!JSC.JSValue {
// Throwing an error
if (callFrame.argumentCount() < 1) {
return globalObject.throw("Missing required argument", .{});
}
// Or returning a success value
return JSC.JSValue.jsString(globalObject, "Success!");
}
```
This pattern allows Zig functions to:
1. Return JavaScript values on success
2. Throw JavaScript exceptions on error
3. Propagate errors automatically through the call stack
## Type Safety and Error Handling
The binding system includes robust error handling:
```cpp
// Example of type checking in generated code
JSTextDecoder* thisObject = jsDynamicCast<JSTextDecoder*>(callFrame->thisValue());
if (UNLIKELY(!thisObject)) {
scope.throwException(lexicalGlobalObject,
Bun::createInvalidThisError(lexicalGlobalObject, callFrame->thisValue(), "TextDecoder"_s));
return {};
}
```
## Prototypal Inheritance
The binding system creates proper JavaScript prototype chains:
1. **Constructor**: JSTextDecoderConstructor with standard .prototype property
2. **Prototype**: JSTextDecoderPrototype with methods and properties
3. **Instances**: Each JSTextDecoder instance with **proto** pointing to prototype
This ensures JavaScript inheritance works as expected:
```cpp
// From generated code
void JSTextDecoderConstructor::finishCreation(VM& vm, JSC::JSGlobalObject* globalObject, JSTextDecoderPrototype* prototype)
{
Base::finishCreation(vm, 0, "TextDecoder"_s, PropertyAdditionMode::WithoutStructureTransition);
// Set up the prototype chain
putDirectWithoutTransition(vm, vm.propertyNames->prototype, prototype, PropertyAttribute::DontEnum | PropertyAttribute::DontDelete | PropertyAttribute::ReadOnly);
ASSERT(inherits(info()));
}
```
## Performance Considerations
The binding system is optimized for performance:
1. **Direct Pointer Access**: JavaScript objects maintain a direct pointer to Zig objects
2. **Property Caching**: WriteBarrier caching avoids repeated native calls for stable properties
3. **Memory Management**: JSC garbage collection integrated with Zig memory management
4. **Type Conversion**: Fast paths for common JavaScript/Zig type conversions
## Creating a New Class Binding
To create a new class binding in Bun:
1. **Define the class interface** in a `.classes.ts` file:
```typescript
define({
name: "MyClass",
constructor: true,
finalize: true,
proto: {
myMethod: {
args: 1,
},
myProperty: {
getter: true,
cache: true,
},
},
});
```
2. **Implement the native functionality** in a `.zig` file:
```zig
pub const MyClass = struct {
// Generated bindings
pub const js = JSC.Codegen.JSMyClass;
pub const toJS = js.toJS;
pub const fromJS = js.fromJS;
pub const fromJSDirect = js.fromJSDirect;
// State
value: []const u8,
pub const new = bun.TrivialNew(@This());
// Constructor
pub fn constructor(
globalObject: *JSGlobalObject,
callFrame: *JSC.CallFrame,
) bun.JSError!*MyClass {
const arg = callFrame.argument(0);
// Implementation
}
// Method
pub fn myMethod(
this: *MyClass,
globalObject: *JSGlobalObject,
callFrame: *JSC.CallFrame,
) bun.JSError!JSC.JSValue {
// Implementation
}
// Getter
pub fn getMyProperty(this: *MyClass, globalObject: *JSGlobalObject) JSC.JSValue {
return JSC.JSValue.jsString(globalObject, this.value);
}
// Resource cleanup
pub fn deinit(this: *MyClass) void {
// Clean up resources
}
pub fn finalize(this: *MyClass) void {
this.deinit();
bun.destroy(this);
}
};
```
3. **The binding generator** creates all necessary C++ and Zig glue code to connect JavaScript and Zig, including:
- C++ class definitions
- Method and property bindings
- Memory management utilities
- GC integration code
## Generated Code Structure
The binding generator produces several components:
### 1. C++ Classes
For each Zig class, the system generates:
- **JS<Class>**: Main wrapper that holds a pointer to the Zig object (`JSTextDecoder`)
- **JS<Class>Prototype**: Contains methods and properties (`JSTextDecoderPrototype`)
- **JS<Class>Constructor**: Implementation of the JavaScript constructor (`JSTextDecoderConstructor`)
### 2. C++ Methods and Properties
- **Method Callbacks**: `TextDecoderPrototype__decodeCallback`
- **Property Getters/Setters**: `TextDecoderPrototype__encodingGetterWrap`
- **Initialization Functions**: `finishCreation` methods for setting up the class
### 3. Zig Bindings
- **External Function Declarations**:
```zig
extern fn TextDecoderPrototype__decode(*TextDecoder, *JSC.JSGlobalObject, *JSC.CallFrame) callconv(JSC.conv) JSC.EncodedJSValue;
```
- **Cached Value Accessors**:
```zig
pub fn encodingGetCached(thisValue: JSC.JSValue) ?JSC.JSValue { ... }
pub fn encodingSetCached(thisValue: JSC.JSValue, globalObject: *JSC.JSGlobalObject, value: JSC.JSValue) void { ... }
```
- **Constructor Helpers**:
```zig
pub fn create(globalObject: *JSC.JSGlobalObject) bun.JSError!JSC.JSValue { ... }
```
### 4. GC Integration
- **Memory Cost Calculation**: `estimatedSize` method
- **Child Visitor Methods**: `visitChildrenImpl` and `visitAdditionalChildren`
- **Heap Analysis**: `analyzeHeap` for debugging memory issues
This architecture makes it possible to implement high-performance native functionality in Zig while exposing a clean, idiomatic JavaScript API to users.