Files
bun.sh/src/string_immutable.zig
2021-10-25 00:52:07 -07:00

879 lines
29 KiB
Zig

const std = @import("std");
const expect = std.testing.expect;
const JavascriptString = @import("ast/base.zig").JavascriptString;
usingnamespace @import("string_types.zig");
pub inline fn containsChar(self: string, char: u8) bool {
return indexOfChar(self, char) != null;
}
pub inline fn contains(self: string, str: string) bool {
return std.mem.indexOf(u8, self, str) != null;
}
pub inline fn containsAny(in: anytype, target: string) bool {
for (in) |str| if (contains(str, target)) return true;
return false;
}
pub inline fn indexAny(in: anytype, target: string) ?usize {
for (in) |str, i| if (indexOf(str, target) != null) return i;
return null;
}
pub inline fn indexAnyComptime(target: string, comptime chars: string) ?usize {
for (target) |parent, i| {
inline for (chars) |char| {
if (char == parent) return i;
}
}
return null;
}
pub inline fn indexOfChar(self: string, char: u8) ?usize {
return std.mem.indexOfScalar(@TypeOf(char), self, char);
}
pub fn indexOfCharNeg(self: string, char: u8) i32 {
var i: u32 = 0;
while (i < self.len) : (i += 1) {
if (self[i] == char) return @intCast(i32, i);
}
return -1;
}
pub fn indexOfSigned(self: string, str: string) i32 {
const i = std.mem.indexOf(u8, self, str) orelse return -1;
return @intCast(i32, i);
}
pub inline fn lastIndexOfChar(self: string, char: u8) ?usize {
return std.mem.lastIndexOfScalar(u8, self, char);
}
pub inline fn lastIndexOf(self: string, str: string) ?usize {
return std.mem.lastIndexOf(u8, self, str);
}
pub inline fn indexOf(self: string, str: string) ?usize {
return std.mem.indexOf(u8, self, str);
}
pub fn cat(allocator: *std.mem.Allocator, first: string, second: string) !string {
var out = try allocator.alloc(u8, first.len + second.len);
std.mem.copy(u8, out, first);
std.mem.copy(u8, out[first.len..], second);
return out;
}
// 30 character string or a slice
pub const StringOrTinyString = struct {
pub const Max = 30;
const Buffer = [Max]u8;
remainder_buf: Buffer = undefined,
remainder_len: u7 = 0,
is_tiny_string: u1 = 0,
pub inline fn slice(this: *const StringOrTinyString) []const u8 {
// This is a switch expression instead of a statement to make sure it uses the faster assembly
return switch (this.is_tiny_string) {
1 => this.remainder_buf[0..this.remainder_len],
0 => @intToPtr([*]const u8, std.mem.readIntNative(usize, this.remainder_buf[0..@sizeOf(usize)]))[0..std.mem.readIntNative(usize, this.remainder_buf[@sizeOf(usize) .. @sizeOf(usize) * 2])],
};
}
pub fn deinit(this: *StringOrTinyString, allocator: *std.mem.Allocator) void {
if (this.is_tiny_string == 1) return;
// var slice_ = this.slice();
// allocator.free(slice_);
}
pub fn init(stringy: string) StringOrTinyString {
switch (stringy.len) {
0 => {
return StringOrTinyString{ .is_tiny_string = 1, .remainder_len = 0 };
},
1...(@sizeOf(Buffer)) => {
@setRuntimeSafety(false);
var tiny = StringOrTinyString{
.is_tiny_string = 1,
.remainder_len = @truncate(u7, stringy.len),
};
std.mem.copy(u8, &tiny.remainder_buf, stringy);
return tiny;
},
else => {
var tiny = StringOrTinyString{
.is_tiny_string = 0,
.remainder_len = 0,
};
std.mem.writeIntNative(usize, tiny.remainder_buf[0..@sizeOf(usize)], @ptrToInt(stringy.ptr));
std.mem.writeIntNative(usize, tiny.remainder_buf[@sizeOf(usize) .. @sizeOf(usize) * 2], stringy.len);
return tiny;
},
}
}
pub fn initLowerCase(stringy: string) StringOrTinyString {
switch (stringy.len) {
0 => {
return StringOrTinyString{ .is_tiny_string = 1, .remainder_len = 0 };
},
1...(@sizeOf(Buffer)) => {
@setRuntimeSafety(false);
var tiny = StringOrTinyString{
.is_tiny_string = 1,
.remainder_len = @truncate(u7, stringy.len),
};
_ = copyLowercase(stringy, &tiny.remainder_buf);
return tiny;
},
else => {
var tiny = StringOrTinyString{
.is_tiny_string = 0,
.remainder_len = 0,
};
std.mem.writeIntNative(usize, tiny.remainder_buf[0..@sizeOf(usize)], @ptrToInt(stringy.ptr));
std.mem.writeIntNative(usize, tiny.remainder_buf[@sizeOf(usize) .. @sizeOf(usize) * 2], stringy.len);
return tiny;
},
}
}
};
pub fn copyLowercase(in: string, out: []u8) string {
@setRuntimeSafety(false);
var in_slice: string = in;
var out_slice: []u8 = out[0..in.len];
begin: while (out_slice.len > 0) {
@setRuntimeSafety(false);
for (in_slice) |c, i| {
@setRuntimeSafety(false);
switch (c) {
'A'...'Z' => {
@setRuntimeSafety(false);
@memcpy(out_slice.ptr, in_slice.ptr, i);
out_slice[i] = std.ascii.toLower(c);
const end = i + 1;
if (end >= out_slice.len) break :begin;
in_slice = in_slice[end..];
out_slice = out_slice[end..];
continue :begin;
},
else => {},
}
}
@memcpy(out_slice.ptr, in_slice.ptr, in_slice.len);
break :begin;
}
return out[0..in.len];
}
test "copyLowercase" {
{
var in = "Hello, World!";
var out = std.mem.zeroes([in.len]u8);
var out_ = copyLowercase(in, &out);
try std.testing.expectEqualStrings(out_, "hello, world!");
}
{
var in = "_ListCache";
var out = std.mem.zeroes([in.len]u8);
var out_ = copyLowercase(in, &out);
try std.testing.expectEqualStrings(out_, "_listcache");
}
}
test "StringOrTinyString" {
const correct: string = "helloooooooo";
const big = "wawaweewaverylargeihaveachairwawaweewaverylargeihaveachairwawaweewaverylargeihaveachairwawaweewaverylargeihaveachair";
var str = StringOrTinyString.init(correct);
try std.testing.expectEqualStrings(correct, str.slice());
str = StringOrTinyString.init(big);
try std.testing.expectEqualStrings(big, str.slice());
try std.testing.expect(@sizeOf(StringOrTinyString) == 32);
}
test "StringOrTinyString Lowercase" {
const correct: string = "HELLO!!!!!";
var str = StringOrTinyString.initLowerCase(correct);
try std.testing.expectEqualStrings("hello!!!!!", str.slice());
}
pub fn hasPrefix(self: string, str: string) bool {
return str.len > 0 and startsWith(self, str);
}
pub fn startsWith(self: string, str: string) bool {
if (str.len > self.len) {
return false;
}
var i: usize = 0;
while (i < str.len) {
if (str[i] != self[i]) {
return false;
}
i += 1;
}
return true;
}
pub inline fn endsWith(self: string, str: string) bool {
return str.len == 0 or @call(.{ .modifier = .always_inline }, std.mem.endsWith, .{ u8, self, str });
}
pub inline fn startsWithChar(self: string, char: u8) bool {
return self.len > 0 and self[0] == char;
}
pub inline fn endsWithChar(self: string, char: u8) bool {
return self.len == 0 or self[self.len - 1] == char;
}
pub fn endsWithAny(self: string, str: string) bool {
const end = self[self.len - 1];
for (str) |char| {
if (char == end) {
return true;
}
}
return false;
}
pub fn lastNonwhitespace(self: string, str: string) bool {}
pub fn quotedAlloc(allocator: *std.mem.Allocator, self: string) !string {
var count: usize = 0;
for (self) |char| {
count += @boolToInt(char == '"');
}
if (count == 0) {
return allocator.dupe(u8, self);
}
var i: usize = 0;
var out = try allocator.alloc(u8, self.len + count);
for (self) |char| {
if (char == '"') {
out[i] = '\\';
i += 1;
}
out[i] = char;
i += 1;
}
return out;
}
pub fn eqlAnyComptime(self: string, comptime list: []const string) bool {
inline for (list) |item| {
if (eqlComptimeCheckLen(self, item, true)) return true;
}
return false;
}
pub fn endsWithAnyComptime(self: string, comptime str: string) bool {
if (comptime str.len < 10) {
const last = self[self.len - 1];
inline for (str) |char| {
if (char == last) {
return true;
}
}
return false;
} else {
return endsWithAny(self, str);
}
}
pub fn eql(self: string, other: anytype) bool {
if (self.len != other.len) return false;
if (comptime @TypeOf(other) == *string) {
return eql(self, other.*);
}
for (self) |c, i| {
if (other[i] != c) return false;
}
return true;
}
pub inline fn eqlInsensitive(self: string, other: anytype) bool {
return std.ascii.eqlIgnoreCase(self, other);
}
pub fn eqlComptime(self: string, comptime alt: anytype) bool {
return eqlComptimeCheckLen(self, alt, true);
}
pub fn eqlComptimeIgnoreLen(self: string, comptime alt: anytype) bool {
return eqlComptimeCheckLen(self, alt, false);
}
inline fn eqlComptimeCheckLen(self: string, comptime alt: anytype, comptime check_len: bool) bool {
switch (comptime alt.len) {
0 => {
@compileError("Invalid size passed to eqlComptime");
},
2 => {
const check = comptime std.mem.readIntNative(u16, alt[0..alt.len]);
return ((comptime !check_len) or self.len == alt.len) and std.mem.readIntNative(u16, self[0..2]) == check;
},
1, 3 => {
if ((comptime check_len) and alt.len != self.len) {
return false;
}
inline for (alt) |c, i| {
if (self[i] != c) return false;
}
return true;
},
4 => {
const check = comptime std.mem.readIntNative(u32, alt[0..alt.len]);
return ((comptime !check_len) or self.len == alt.len) and std.mem.readIntNative(u32, self[0..4]) == check;
},
6 => {
const first = std.mem.readIntNative(u32, alt[0..4]);
const second = std.mem.readIntNative(u16, alt[4..6]);
return self.len == alt.len and first == std.mem.readIntNative(u32, self[0..4]) and
second == std.mem.readIntNative(u16, self[4..6]);
},
5, 7 => {
const check = comptime std.mem.readIntNative(u32, alt[0..4]);
if (((comptime check_len) and
self.len != alt.len) or
std.mem.readIntNative(u32, self[0..4]) != check)
{
return false;
}
const remainder = self[4..];
inline for (alt[4..]) |c, i| {
if (remainder[i] != c) return false;
}
return true;
},
8 => {
const check = comptime std.mem.readIntNative(u64, alt[0..alt.len]);
return ((comptime !check_len) or self.len == alt.len) and std.mem.readIntNative(u64, self[0..8]) == check;
},
9...11 => {
const first = std.mem.readIntNative(u64, alt[0..8]);
if (((comptime check_len) and self.len != alt.len) or first != std.mem.readIntNative(u64, self[0..8])) {
return false;
}
inline for (alt[8..]) |c, i| {
if (self[i + 8] != c) return false;
}
return true;
},
12 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u32, alt[8..12]);
return ((comptime !check_len) or self.len == alt.len) and first == std.mem.readIntNative(u64, self[0..8]) and second == std.mem.readIntNative(u32, self[8..12]);
},
13...15 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u32, alt[8..12]);
if (((comptime !check_len) or self.len != alt.len) or first != std.mem.readIntNative(u64, self[0..8]) or second != std.mem.readIntNative(u32, self[8..12])) {
return false;
}
inline for (alt[13..]) |c, i| {
if (self[i + 13] != c) return false;
}
return true;
},
16 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u64, alt[8..16]);
return ((comptime !check_len) or self.len == alt.len) and first == std.mem.readIntNative(u64, self[0..8]) and second == std.mem.readIntNative(u64, self[8..16]);
},
17 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u64, alt[8..16]);
return ((comptime !check_len) or self.len == alt.len) and
first == std.mem.readIntNative(u64, self[0..8]) and second ==
std.mem.readIntNative(u64, self[8..16]) and
alt[16] == self[16];
},
18 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u64, alt[8..16]);
const third = comptime std.mem.readIntNative(u16, alt[16..18]);
return ((comptime !check_len) or self.len == alt.len) and
first == std.mem.readIntNative(u64, self[0..8]) and second ==
std.mem.readIntNative(u64, self[8..16]) and
std.mem.readIntNative(u16, self[16..18]) == third;
},
23 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u64, alt[8..16]);
return ((comptime !check_len) or self.len == alt.len) and
first == std.mem.readIntNative(u64, self[0..8]) and
second == std.mem.readIntNative(u64, self[8..16]) and
eqlComptimeIgnoreLen(self[16..23], comptime alt[16..23]);
},
22 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u64, alt[8..16]);
return ((comptime !check_len) or self.len == alt.len) and
first == std.mem.readIntNative(u64, self[0..8]) and
second == std.mem.readIntNative(u64, self[8..16]) and
eqlComptimeIgnoreLen(self[16..22], comptime alt[16..22]);
},
24 => {
const first = comptime std.mem.readIntNative(u64, alt[0..8]);
const second = comptime std.mem.readIntNative(u64, alt[8..16]);
const third = comptime std.mem.readIntNative(u64, alt[16..24]);
return ((comptime !check_len) or self.len == alt.len) and
first == std.mem.readIntNative(u64, self[0..8]) and
second == std.mem.readIntNative(u64, self[8..16]) and
third == std.mem.readIntNative(u64, self[16..24]);
},
else => {
@compileError(alt ++ " is too long.");
},
}
}
pub inline fn append(allocator: *std.mem.Allocator, self: string, other: string) !string {
return std.fmt.allocPrint(allocator, "{s}{s}", .{ self, other });
}
pub inline fn joinBuf(out: []u8, parts: anytype, comptime parts_len: usize) []u8 {
var remain = out;
var count: usize = 0;
comptime var i: usize = 0;
inline while (i < parts_len) : (i += 1) {
const part = parts[i];
std.mem.copy(u8, remain, part);
remain = remain[part.len..];
count += part.len;
}
return out[0..count];
}
pub fn index(self: string, str: string) i32 {
if (std.mem.indexOf(u8, self, str)) |i| {
return @intCast(i32, i);
} else {
return -1;
}
}
pub fn eqlUtf16(comptime self: string, other: []const u16) bool {
return std.mem.eql(u16, std.unicode.utf8ToUtf16LeStringLiteral(self), other);
}
pub fn toUTF8Alloc(allocator: *std.mem.Allocator, js: []const u16) !string {
var temp: [4]u8 = undefined;
var list = std.ArrayList(u8).initCapacity(allocator, js.len) catch unreachable;
var i: usize = 0;
while (i < js.len) : (i += 1) {
var r1 = @as(i32, js[i]);
if (r1 >= 0xD800 and r1 <= 0xDBFF and i + 1 < js.len) {
const r2 = @as(i32, js[i] + 1);
if (r2 >= 0xDC00 and r2 <= 0xDFFF) {
r1 = (r1 - 0xD800) << 10 | (r2 - 0xDC00) + 0x10000;
i += 1;
}
}
const width = encodeWTF8Rune(&temp, r1);
try list.appendSlice(temp[0..width]);
}
return list.items;
}
// Check utf16 string equals utf8 string without allocating extra memory
pub fn utf16EqlString(text: []const u16, str: string) bool {
if (text.len > str.len) {
// Strings can't be equal if UTF-16 encoding is longer than UTF-8 encoding
return false;
}
var temp = [4]u8{ 0, 0, 0, 0 };
const n = text.len;
var j: usize = 0;
var i: usize = 0;
// TODO: is it safe to just make this u32 or u21?
var r1: i32 = undefined;
var k: u4 = 0;
while (i < n) : (i += 1) {
r1 = text[i];
if (r1 >= 0xD800 and r1 <= 0xDBFF and i + 1 < n) {
const r2: i32 = text[i + 1];
if (r2 >= 0xDC00 and r2 <= 0xDFFF) {
r1 = (r1 - 0xD800) << 10 | (r2 - 0xDC00) + 0x10000;
i += 1;
}
}
const width = encodeWTF8Rune(&temp, r1);
if (j + width > str.len) {
return false;
}
k = 0;
while (k < width) : (k += 1) {
if (temp[k] != str[j]) {
return false;
}
j += 1;
}
}
return j == str.len;
}
// This is a clone of golang's "utf8.EncodeRune" that has been modified to encode using
// WTF-8 instead. See https://simonsapin.github.io/wtf-8/ for more info.
pub fn encodeWTF8Rune(p: []u8, r: i32) u3 {
return @call(
.{
.modifier = .always_inline,
},
encodeWTF8RuneT,
.{
p,
u32,
@intCast(u32, r),
},
);
}
pub fn encodeWTF8RuneT(p: []u8, comptime R: type, r: R) u3 {
switch (r) {
0...0x7F => {
p[0] = @intCast(u8, r);
return 1;
},
(0x7F + 1)...0x7FF => {
p[0] = @truncate(u8, 0xC0 | ((r >> 6)));
p[1] = @truncate(u8, 0x80 | (r & 0x3F));
return 2;
},
(0x7FF + 1)...0xFFFF => {
p[0] = @truncate(u8, 0xE0 | ((r >> 12)));
p[1] = @truncate(u8, 0x80 | ((r >> 6) & 0x3F));
p[2] = @truncate(u8, 0x80 | (r & 0x3F));
return 3;
},
else => {
p[0] = @truncate(u8, 0xF0 | ((r >> 18)));
p[1] = @truncate(u8, 0x80 | ((r >> 12) & 0x3F));
p[2] = @truncate(u8, 0x80 | ((r >> 6) & 0x3F));
p[3] = @truncate(u8, 0x80 | (r & 0x3F));
return 4;
},
}
}
pub fn containsNonBmpCodePoint(text: string) bool {
var iter = CodepointIterator.init(text);
var curs = CodepointIterator.Cursor{};
while (iter.next(&curs)) {
if (curs.c > 0xFFFF) {
return true;
}
}
return false;
}
// this is std.mem.trim except it doesn't forcibly change the slice to be const
pub fn trim(slice: anytype, values_to_strip: []const u8) @TypeOf(slice) {
var begin: usize = 0;
var end: usize = slice.len;
while (begin < end and std.mem.indexOfScalar(u8, values_to_strip, slice[begin]) != null) : (begin += 1) {}
while (end > begin and std.mem.indexOfScalar(u8, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
return slice[begin..end];
}
pub fn containsNonBmpCodePointUTF16(_text: []const u16) bool {
const n = _text.len;
if (n > 0) {
var i: usize = 0;
var text = _text[0 .. n - 1];
while (i < n - 1) : (i += 1) {
switch (text[i]) {
// Check for a high surrogate
0xD800...0xDBFF => {
// Check for a low surrogate
switch (text[i + 1]) {
0xDC00...0xDFFF => {
return true;
},
else => {},
}
},
else => {},
}
}
}
return false;
}
pub fn join(slices: []const string, delimiter: string, allocator: *std.mem.Allocator) !string {
return try std.mem.join(allocator, delimiter, slices);
}
pub fn cmpStringsAsc(ctx: void, a: string, b: string) bool {
return std.mem.order(u8, a, b) == .lt;
}
pub fn cmpStringsDesc(ctx: void, a: string, b: string) bool {
return std.mem.order(u8, a, b) == .gt;
}
const sort_asc = std.sort.asc(u8);
const sort_desc = std.sort.desc(u8);
pub fn sortAsc(in: []string) void {
std.sort.sort([]const u8, in, {}, cmpStringsAsc);
}
pub fn sortDesc(in: []string) void {
std.sort.sort([]const u8, in, {}, cmpStringsDesc);
}
pub fn isASCIIHexDigit(c: u8) bool {
return std.ascii.isDigit(c) or std.ascii.isXDigit(c);
}
pub fn toASCIIHexValue(character: u8) u8 {
std.debug.assert(isASCIIHexDigit(character));
return switch (character) {
0...('A' - 1) => character - '0',
else => (character - 'A' + 10) & 0xF,
};
}
pub inline fn utf8ByteSequenceLength(first_byte: u8) u3 {
return switch (first_byte) {
0b0000_0000...0b0111_1111 => 1,
0b1100_0000...0b1101_1111 => 2,
0b1110_0000...0b1110_1111 => 3,
0b1111_0000...0b1111_0111 => 4,
else => 0,
};
}
pub fn NewCodePointIterator(comptime CodePointType: type, comptime zeroValue: comptime_int) type {
return struct {
const Iterator = @This();
bytes: []const u8,
i: usize,
next_width: usize = 0,
width: u3 = 0,
c: CodePointType = zeroValue,
pub const Cursor = struct {
i: u32 = 0,
c: CodePointType = zeroValue,
width: u3 = 0,
};
pub fn init(str: string) Iterator {
return Iterator{ .bytes = str, .i = 0, .c = zeroValue };
}
pub fn initOffset(str: string, i: usize) Iterator {
return Iterator{ .bytes = str, .i = i, .c = zeroValue };
}
pub inline fn next(it: *const Iterator, cursor: *Cursor) bool {
const pos: u32 = @as(u32, cursor.width) + cursor.i;
if (pos >= it.bytes.len) {
return false;
}
const cp_len = utf8ByteSequenceLength(it.bytes[pos]);
cursor.* = Cursor{
.i = pos,
.c = @as(
CodePointType,
switch (cp_len) {
1 => it.bytes[pos],
2 => std.unicode.utf8Decode2(it.bytes[pos..][0..2]) catch return false,
3 => std.unicode.utf8Decode3(it.bytes[pos..][0..3]) catch return false,
4 => std.unicode.utf8Decode4(it.bytes[pos..][0..4]) catch return false,
else => return false,
},
),
.width = cp_len,
};
return true;
}
inline fn nextCodepointSlice(it: *Iterator) []const u8 {
const bytes = it.bytes;
const prev = it.i;
const next_ = prev + it.next_width;
if (bytes.len <= next_) return "";
const cp_len = utf8ByteSequenceLength(bytes[next_]);
it.next_width = cp_len;
it.i = @minimum(next_, bytes.len);
const slice = bytes[prev..][0..cp_len];
it.width = @intCast(u3, slice.len);
return slice;
}
pub fn needsUTF8Decoding(slice: string) bool {
var it = Iterator{ .bytes = slice, .i = 0 };
while (true) {
const part = it.nextCodepointSlice();
@setRuntimeSafety(false);
switch (part.len) {
0 => return false,
1 => continue,
else => return true,
}
}
}
pub fn scanUntilQuotedValueOrEOF(iter: *Iterator, comptime quote: CodePointType) usize {
while (iter.c > -1) {
if (!switch (iter.nextCodepoint()) {
quote => false,
'\\' => brk: {
if (iter.nextCodepoint() == quote) {
continue;
}
break :brk true;
},
else => true,
}) {
return iter.i + 1;
}
}
return iter.i;
}
pub fn nextCodepoint(it: *Iterator) CodePointType {
const slice = it.nextCodepointSlice();
it.c = switch (slice.len) {
0 => zeroValue,
1 => @intCast(CodePointType, slice[0]),
2 => @intCast(CodePointType, std.unicode.utf8Decode2(slice) catch unreachable),
3 => @intCast(CodePointType, std.unicode.utf8Decode3(slice) catch unreachable),
4 => @intCast(CodePointType, std.unicode.utf8Decode4(slice) catch unreachable),
else => unreachable,
};
return it.c;
}
pub fn nextCodepointNullable(it: *Iterator) ?CodePointType {
const slice = it.nextCodepointSlice();
if (slice.len == 0) return null;
it.c = switch (slice.len) {
1 => @intCast(CodePointType, slice[0]),
2 => @intCast(CodePointType, std.unicode.utf8Decode2(slice) catch unreachable),
3 => @intCast(CodePointType, std.unicode.utf8Decode3(slice) catch unreachable),
4 => @intCast(CodePointType, std.unicode.utf8Decode4(slice) catch unreachable),
else => unreachable,
};
return it.c;
}
pub fn nextCodepointNoReturn(it: *Iterator) void {
const slice = it.nextCodepointSlice();
it.c = switch (slice.len) {
0 => zeroValue,
1 => @intCast(CodePointType, slice[0]),
2 => @intCast(CodePointType, std.unicode.utf8Decode2(slice) catch unreachable),
3 => @intCast(CodePointType, std.unicode.utf8Decode3(slice) catch unreachable),
4 => @intCast(CodePointType, std.unicode.utf8Decode4(slice) catch unreachable),
else => unreachable,
};
}
/// Look ahead at the next n codepoints without advancing the iterator.
/// If fewer than n codepoints are available, then return the remainder of the string.
pub fn peek(it: *Iterator, n: usize) []const u8 {
const original_i = it.i;
defer it.i = original_i;
var end_ix = original_i;
var found: usize = 0;
while (found < n) : (found += 1) {
const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..];
end_ix += next_codepoint.len;
}
return it.bytes[original_i..end_ix];
}
};
}
pub const CodepointIterator = NewCodePointIterator(CodePoint, -1);
pub const UnsignedCodepointIterator = NewCodePointIterator(u32, 0);
pub fn NewLengthSorter(comptime Type: type, comptime field: string) type {
return struct {
const LengthSorter = @This();
pub fn lessThan(context: LengthSorter, lhs: Type, rhs: Type) bool {
return @field(lhs, field).len < @field(rhs, field).len;
}
};
}
test "join" {
var string_list = &[_]string{ "abc", "def", "123", "hello" };
const list = try join(string_list, "-", std.heap.page_allocator);
try std.testing.expectEqualStrings("abc-def-123-hello", list);
}
test "sortAsc" {
var string_list = [_]string{ "abc", "def", "123", "hello" };
var sorted_string_list = [_]string{ "123", "abc", "def", "hello" };
var sorted_join = try join(&sorted_string_list, "-", std.heap.page_allocator);
sortAsc(&string_list);
var string_join = try join(&string_list, "-", std.heap.page_allocator);
try std.testing.expectEqualStrings(sorted_join, string_join);
}
test "sortDesc" {
var string_list = [_]string{ "abc", "def", "123", "hello" };
var sorted_string_list = [_]string{ "hello", "def", "abc", "123" };
var sorted_join = try join(&sorted_string_list, "-", std.heap.page_allocator);
sortDesc(&string_list);
var string_join = try join(&string_list, "-", std.heap.page_allocator);
try std.testing.expectEqualStrings(sorted_join, string_join);
}
pub usingnamespace @import("exact_size_matcher.zig");