Files
bun.sh/src/js_ast.zig
Jarred Sumner 778c24f176 keep
2021-05-13 23:22:08 -07:00

3449 lines
118 KiB
Zig

const std = @import("std");
const logger = @import("logger.zig");
const JSXRuntime = @import("options.zig").JSX.Runtime;
usingnamespace @import("global.zig");
usingnamespace @import("ast/base.zig");
const ImportRecord = @import("import_record.zig").ImportRecord;
// There are three types.
// 1. Expr (expression)
// 2. Stmt (statement)
// 3. Binding
// Q: "What's the difference between an expression and a statement?"
// A: > Expression: Something which evaluates to a value. Example: 1+2/x
// > Statement: A line of code which does something. Example: GOTO 100
// > https://stackoverflow.com/questions/19132/expression-versus-statement/19224#19224
// Expr, Binding, and Stmt each wrap a Data:
// Data is where the actual data where the node lives.
// There are four possible versions of this structure:
// [ ] 1. *Expr, *Stmt, *Binding
// [ ] 1a. *Expr, *Stmt, *Binding something something dynamic dispatch
// [ ] 2. *Data
// [x] 3. Data.(*) (The union value in Data is a pointer)
// I chose #3 mostly for code simplification -- sometimes, the data is modified in-place.
// But also it uses the least memory.
// Since Data is a union, the size in bytes of Data is the max of all types
// So with #1 or #2, if S.Function consumes 768 bits, that means Data must be >= 768 bits
// Which means "true" in code now takes up over 768 bits, probably more than what v8 spends
// Instead, this approach means Data is the size of a pointer.
// It's not really clear which approach is best without benchmarking it.
// The downside with this approach is potentially worse memory locality, since the data for the node is somewhere else.
// But it could also be better memory locality due to smaller in-memory size (more likely to hit the cache)
// only benchmarks will provide an answer!
// But we must have pointers somewhere in here because can't have types that contain themselves
pub const BindingNodeIndex = Binding;
pub const StmtNodeIndex = Stmt;
pub const ExprNodeIndex = Expr;
pub const ExprNodeList = []Expr;
pub const StmtNodeList = []Stmt;
pub const BindingNodeList = []Binding;
pub const ImportItemStatus = packed enum {
none,
// The linker doesn't report import/export mismatch errors
generated,
// The printer will replace this import with "undefined"
missing,
};
pub const AssignTarget = enum {
none,
replace, // "a = b"
update, // "a += b"
};
pub const LocRef = struct { loc: logger.Loc, ref: ?Ref };
pub const Flags = struct {
pub const JSXElement = packed struct {
is_key_before_rest: bool = false,
};
// Instead of 5 bytes for booleans, we can store it in 5 bits
// It will still round up to 1 byte. But that's 4 bytes less!
pub const Property = packed struct {
is_computed: bool = false,
is_method: bool = false,
is_static: bool = false,
was_shorthand: bool = false,
is_spread: bool = false,
const None = Flags.Property{};
};
pub const Function = packed struct {
is_async: bool = false,
is_generator: bool = false,
has_rest_arg: bool = false,
has_if_scope: bool = false,
// This is true if the function is a method
is_unique_formal_parameters: bool = false,
// Only applicable to function statements.
is_export: bool = false,
const None = Flags.Function{};
};
};
pub const Binding = struct {
loc: logger.Loc,
data: B,
const Serializable = struct {
@"type": Tag,
object: string,
value: B,
loc: logger.Loc,
};
pub fn jsonStringify(self: *const @This(), options: anytype, writer: anytype) !void {
return try std.json.stringify(Serializable{ .@"type" = std.meta.activeTag(self.data), .object = "binding", .value = self.data, .loc = self.loc }, options, writer);
}
pub fn ToExpr(comptime expr_type: type, comptime func_type: anytype) type {
const ExprType = expr_type;
return struct {
context: *ExprType,
allocator: *std.mem.Allocator,
pub const Context = @This();
pub fn wrapIdentifier(ctx: *const Context, loc: logger.Loc, ref: Ref) Expr {
return func_type(ctx.context, loc, ref);
}
pub fn init(context: *ExprType) Context {
return Context{ .context = context, .allocator = context.allocator };
}
};
}
pub fn toExpr(binding: *const Binding, wrapper: anytype) Expr {
var loc = binding.loc;
switch (binding.data) {
.b_missing => {
return Expr.alloc(wrapper.allocator, E.Missing{}, loc);
},
.b_identifier => |b| {
return wrapper.wrapIdentifier(loc, b.ref);
},
.b_array => |b| {
var exprs = wrapper.allocator.alloc(Expr, b.items.len) catch unreachable;
var i: usize = 0;
while (i < exprs.len) : (i += 1) {
const item = b.items[i];
exprs[i] = convert: {
const expr = toExpr(&item.binding, wrapper);
if (b.has_spread and i == exprs.len - 1) {
break :convert Expr.alloc(wrapper.allocator, E.Spread{ .value = expr }, expr.loc);
} else if (item.default_value) |default| {
break :convert Expr.assign(expr, default, wrapper.allocator);
} else {
break :convert expr;
}
};
}
return Expr.alloc(wrapper.allocator, E.Array{ .items = exprs, .is_single_line = b.is_single_line }, loc);
},
.b_object => |b| {
var properties = wrapper.allocator.alloc(G.Property, b.properties.len) catch unreachable;
var i: usize = 0;
while (i < properties.len) : (i += 1) {
const item = b.properties[i];
properties[i] = G.Property{
.flags = item.flags,
.kind = if (item.flags.is_spread) G.Property.Kind.spread else G.Property.Kind.normal,
.value = toExpr(&item.value, wrapper),
.initializer = item.default_value,
};
}
return Expr.alloc(wrapper.allocator, E.Object{ .properties = properties, .is_single_line = b.is_single_line }, loc);
},
else => {
Global.panic("Interanl error", .{});
},
}
}
pub const Tag = packed enum {
b_identifier,
b_array,
b_property,
b_object,
b_missing,
};
pub fn init(t: anytype, loc: logger.Loc) Binding {
switch (@TypeOf(t)) {
*B.Identifier => {
return Binding{ .loc = loc, .data = B{ .b_identifier = t } };
},
*B.Array => {
return Binding{ .loc = loc, .data = B{ .b_array = t } };
},
*B.Property => {
return Binding{ .loc = loc, .data = B{ .b_property = t } };
},
*B.Object => {
return Binding{ .loc = loc, .data = B{ .b_object = t } };
},
*B.Missing => {
return Binding{ .loc = loc, .data = B{ .b_missing = t } };
},
else => {
@compileError("Invalid type passed to Binding.init");
},
}
}
pub fn alloc(allocator: *std.mem.Allocator, t: anytype, loc: logger.Loc) Binding {
switch (@TypeOf(t)) {
B.Identifier => {
var data = allocator.create(B.Identifier) catch unreachable;
data.* = t;
return Binding{ .loc = loc, .data = B{ .b_identifier = data } };
},
B.Array => {
var data = allocator.create(B.Array) catch unreachable;
data.* = t;
return Binding{ .loc = loc, .data = B{ .b_array = data } };
},
B.Property => {
var data = allocator.create(B.Property) catch unreachable;
data.* = t;
return Binding{ .loc = loc, .data = B{ .b_property = data } };
},
B.Object => {
var data = allocator.create(B.Object) catch unreachable;
data.* = t;
return Binding{ .loc = loc, .data = B{ .b_object = data } };
},
B.Missing => {
var data = allocator.create(B.Missing) catch unreachable;
data.* = t;
return Binding{ .loc = loc, .data = B{ .b_missing = data } };
},
else => {
@compileError("Invalid type passed to Binding.alloc");
},
}
}
};
pub const B = union(Binding.Tag) {
b_identifier: *B.Identifier,
b_array: *B.Array,
b_property: *B.Property,
b_object: *B.Object,
b_missing: *B.Missing,
pub const Identifier = struct {
ref: Ref,
};
pub const Property = struct {
flags: Flags.Property = Flags.Property.None,
key: ExprNodeIndex,
value: BindingNodeIndex,
default_value: ?ExprNodeIndex = null,
};
pub const Object = struct { properties: []Property, is_single_line: bool = false };
pub const Array = struct {
items: []ArrayBinding,
has_spread: bool = false,
is_single_line: bool = false,
};
pub const Missing = struct {};
};
pub const ClauseItem = struct {
alias: string,
alias_loc: logger.Loc,
name: LocRef,
// This is the original name of the symbol stored in "Name". It's needed for
// "SExportClause" statements such as this:
//
// export {foo as bar} from 'path'
//
// In this case both "foo" and "bar" are aliases because it's a re-export.
// We need to preserve both aliases in case the symbol is renamed. In this
// example, "foo" is "OriginalName" and "bar" is "Alias".
original_name: string,
};
pub const G = struct {
pub const Decl = struct {
binding: BindingNodeIndex,
value: ?ExprNodeIndex = null,
};
pub const NamespaceAlias = struct {
namespace_ref: Ref,
alias: string,
};
pub const ExportStarAlias = struct {
loc: logger.Loc,
// Although this alias name starts off as being the same as the statement's
// namespace symbol, it may diverge if the namespace symbol name is minified.
// The original alias name is preserved here to avoid this scenario.
original_name: string,
};
pub const Class = struct {
class_keyword: logger.Range = logger.Range.None,
ts_decorators: ExprNodeList = &([_]Expr{}),
class_name: ?LocRef = null,
extends: ?ExprNodeIndex = null,
body_loc: logger.Loc = logger.Loc.Empty,
properties: []Property = &([_]Property{}),
};
// invalid shadowing if left as Comment
pub const Comment = struct { loc: logger.Loc, text: string };
pub const Property = struct {
ts_decorators: ExprNodeList = &([_]Expr{}),
// Key is optional for spread
key: ?ExprNodeIndex = null,
// This is omitted for class fields
value: ?ExprNodeIndex = null,
// This is used when parsing a pattern that uses default values:
//
// [a = 1] = [];
// ({a = 1} = {});
//
// It's also used for class fields:
//
// class Foo { a = 1 }
//
initializer: ?ExprNodeIndex = null,
kind: Kind = Kind.normal,
flags: Flags.Property = Flags.Property.None,
pub const Kind = packed enum {
normal,
get,
set,
spread,
};
};
pub const FnBody = struct {
loc: logger.Loc,
stmts: StmtNodeList,
};
pub const Fn = struct {
name: ?LocRef,
open_parens_loc: logger.Loc,
args: []Arg = &([_]Arg{}),
body: ?FnBody = null,
arguments_ref: ?Ref = null,
flags: Flags.Function = Flags.Function.None,
};
pub const Arg = struct {
ts_decorators: ExprNodeList = &([_]Expr{}),
binding: BindingNodeIndex,
default: ?ExprNodeIndex = null,
// "constructor(public x: boolean) {}"
is_typescript_ctor_field: bool = false,
};
};
pub const Symbol = struct {
// This is the name that came from the parser. Printed names may be renamed
// during minification or to avoid name collisions. Do not use the original
// name during printing.
original_name: string,
// This is used for symbols that represent items in the import clause of an
// ES6 import statement. These should always be referenced by EImportIdentifier
// instead of an EIdentifier. When this is present, the expression should
// be printed as a property access off the namespace instead of as a bare
// identifier.
//
// For correctness, this must be stored on the symbol instead of indirectly
// associated with the Ref for the symbol somehow. In ES6 "flat bundling"
// mode, re-exported symbols are collapsed using MergeSymbols() and renamed
// symbols from other files that end up at this symbol must be able to tell
// if it has a namespace alias.
namespace_alias: ?G.NamespaceAlias = null,
// Used by the parser for single pass parsing. Symbols that have been merged
// form a linked-list where the last link is the symbol to use. This link is
// an invalid ref if it's the last link. If this isn't invalid, you need to
// FollowSymbols to get the real one.
link: ?Ref = null,
// An estimate of the number of uses of this symbol. This is used to detect
// whether a symbol is used or not. For example, TypeScript imports that are
// unused must be removed because they are probably type-only imports. This
// is an estimate and may not be completely accurate due to oversights in the
// code. But it should always be non-zero when the symbol is used.
use_count_estimate: u32 = 0,
// This is for generating cross-chunk imports and exports for code splitting.
chunk_index: ?u32 = null,
// This is used for minification. Symbols that are declared in sibling scopes
// can share a name. A good heuristic (from Google Closure Compiler) is to
// assign names to symbols from sibling scopes in declaration order. That way
// local variable names are reused in each global function like this, which
// improves gzip compression:
//
// function x(a, b) { ... }
// function y(a, b, c) { ... }
//
// The parser fills this in for symbols inside nested scopes. There are three
// slot namespaces: regular symbols, label symbols, and private symbols.
nested_scope_slot: ?u32 = null,
kind: Kind = Kind.other,
// Certain symbols must not be renamed or minified. For example, the
// "arguments" variable is declared by the runtime for every function.
// Renaming can also break any identifier used inside a "with" statement.
must_not_be_renamed: bool = false,
// We automatically generate import items for property accesses off of
// namespace imports. This lets us remove the expensive namespace imports
// while bundling in many cases, replacing them with a cheap import item
// instead:
//
// import * as ns from 'path'
// ns.foo()
//
// That can often be replaced by this, which avoids needing the namespace:
//
// import {foo} from 'path'
// foo()
//
// However, if the import is actually missing then we don't want to report a
// compile-time error like we do for real import items. This status lets us
// avoid this. We also need to be able to replace such import items with
// undefined, which this status is also used for.
import_item_status: ImportItemStatus = ImportItemStatus.none,
// Sometimes we lower private symbols even if they are supported. For example,
// consider the following TypeScript code:
//
// class Foo {
// #foo = 123
// bar = this.#foo
// }
//
// If "useDefineForClassFields: false" is set in "tsconfig.json", then "bar"
// must use assignment semantics instead of define semantics. We can compile
// that to this code:
//
// class Foo {
// constructor() {
// this.#foo = 123;
// this.bar = this.#foo;
// }
// #foo;
// }
//
// However, we can't do the same for static fields:
//
// class Foo {
// static #foo = 123
// static bar = this.#foo
// }
//
// Compiling these static fields to something like this would be invalid:
//
// class Foo {
// static #foo;
// }
// Foo.#foo = 123;
// Foo.bar = Foo.#foo;
//
// Thus "#foo" must be lowered even though it's supported. Another case is
// when we're converting top-level class declarations to class expressions
// to avoid the TDZ and the class shadowing symbol is referenced within the
// class body:
//
// class Foo {
// static #foo = Foo
// }
//
// This cannot be converted into something like this:
//
// var Foo = class {
// static #foo;
// };
// Foo.#foo = Foo;
//
private_symbol_must_be_lowered: bool = false,
pub const Kind = enum {
// An unbound symbol is one that isn't declared in the file it's referenced
// in. For example, using "window" without declaring it will be unbound.
unbound,
// This has special merging behavior. You're allowed to re-declare these
// symbols more than once in the same scope. These symbols are also hoisted
// out of the scope they are declared in to the closest containing function
// or module scope. These are the symbols with this kind:
//
// - Function arguments
// - Function statements
// - Variables declared using "var"
//
hoisted,
hoisted_function,
// There's a weird special case where catch variables declared using a simple
// identifier (i.e. not a binding pattern) block hoisted variables instead of
// becoming an error:
//
// var e = 0;
// try { throw 1 } catch (e) {
// print(e) // 1
// var e = 2
// print(e) // 2
// }
// print(e) // 0 (since the hoisting stops at the catch block boundary)
//
// However, other forms are still a syntax error:
//
// try {} catch (e) { let e }
// try {} catch ({e}) { var e }
//
// This symbol is for handling this weird special case.
catch_identifier,
// Generator and async functions are not hoisted, but still have special
// properties such as being able to overwrite previous functions with the
// same name
generator_or_async_function,
// This is the special "arguments" variable inside functions
arguments,
// Classes can merge with TypeScript namespaces.
class,
// A class-private identifier (i.e. "#foo").
private_field,
private_method,
private_get,
private_set,
private_get_set_pair,
private_static_field,
private_static_method,
private_static_get,
private_static_set,
private_static_get_set_pair,
// Labels are in their own namespace
label,
// TypeScript enums can merge with TypeScript namespaces and other TypeScript
// enums.
ts_enum,
// TypeScript namespaces can merge with classes, functions, TypeScript enums,
// and other TypeScript namespaces.
ts_namespace,
// In TypeScript, imports are allowed to silently collide with symbols within
// the module. Presumably this is because the imports may be type-only.
import,
// Assigning to a "const" symbol will throw a TypeError at runtime
cconst,
// This annotates all other symbols that don't have special behavior.
other,
};
pub const Use = struct {
count_estimate: u32 = 0,
};
pub const Map = struct {
// This could be represented as a "map[Ref]Symbol" but a two-level array was
// more efficient in profiles. This appears to be because it doesn't involve
// a hash. This representation also makes it trivial to quickly merge symbol
// maps from multiple files together. Each file only generates symbols in a
// single inner array, so you can join the maps together by just make a
// single outer array containing all of the inner arrays. See the comment on
// "Ref" for more detail.
symbols_for_source: [][]Symbol,
pub fn get(self: *Map, ref: Ref) ?Symbol {
if (Ref.isSourceIndexNull(ref.source_index)) {
return null;
}
return self.symbols_for_source[ref.source_index][ref.inner_index];
}
pub fn init(sourceCount: usize, allocator: *std.mem.Allocator) !Map {
var symbols_for_source: [][]Symbol = try allocator.alloc([]Symbol, sourceCount);
return Map{ .symbols_for_source = symbols_for_source };
}
pub fn initList(list: [][]Symbol) Map {
return Map{ .symbols_for_source = list };
}
pub fn follow(symbols: *Map, ref: Ref) Ref {
if (symbols.get(ref)) |*symbol| {
const link = symbol.link orelse return ref;
if (!link.eql(ref)) {
symbol.link = ref;
}
return symbol.link orelse unreachable;
} else {
return ref;
}
}
};
pub fn isKindPrivate(kind: Symbol.Kind) bool {
return @enumToInt(kind) >= @enumToInt(Symbol.Kind.private_field) and @enumToInt(kind) <= @enumToInt(Symbol.Kind.private_static_get_set_pair);
}
pub fn isKindHoisted(kind: Symbol.Kind) bool {
return @enumToInt(kind) == @enumToInt(Symbol.Kind.hoisted) or @enumToInt(kind) == @enumToInt(Symbol.Kind.hoisted_function);
}
pub fn isHoisted(self: *Symbol) bool {
return Symbol.isKindHoisted(self.kind);
}
pub fn isKindHoistedOrFunction(kind: Symbol.Kind) bool {
return isKindHoisted(kind) or kind == Symbol.Kind.generator_or_async_function;
}
pub fn isKindFunction(kind: Symbol.Kind) bool {
return kind == Symbol.Kind.hoisted_function or kind == Symbol.Kind.generator_or_async_function;
}
};
pub const OptionalChain = packed enum(u2) {
// "a?.b"
start,
// "a?.b.c" => ".c" is OptionalChainContinue
// "(a?.b).c" => ".c" is OptionalChain null
ccontinue };
pub const E = struct {
pub const Array = struct {
items: ExprNodeList,
comma_after_spread: ?logger.Loc = null,
is_single_line: bool = false,
is_parenthesized: bool = false,
};
pub const Unary = struct {
op: Op.Code,
value: ExprNodeIndex,
};
pub const Binary = struct {
left: ExprNodeIndex,
right: ExprNodeIndex,
op: Op.Code,
};
pub const Boolean = struct { value: bool };
pub const Super = struct {};
pub const Null = struct {};
pub const This = struct {};
pub const Undefined = struct {};
pub const New = struct {
target: ExprNodeIndex,
args: ExprNodeList,
// True if there is a comment containing "@__PURE__" or "#__PURE__" preceding
// this call expression. See the comment inside ECall for more details.
can_be_unwrapped_if_unused: bool = false,
};
pub const NewTarget = struct {};
pub const ImportMeta = struct {};
pub const Call = struct {
// Node:
target: ExprNodeIndex,
args: ExprNodeList,
optional_chain: ?OptionalChain = null,
is_direct_eval: bool = false,
// True if there is a comment containing "@__PURE__" or "#__PURE__" preceding
// this call expression. This is an annotation used for tree shaking, and
// means that the call can be removed if it's unused. It does not mean the
// call is pure (e.g. it may still return something different if called twice).
//
// Note that the arguments are not considered to be part of the call. If the
// call itself is removed due to this annotation, the arguments must remain
// if they have side effects.
can_be_unwrapped_if_unused: bool = false,
// Used when printing to generate the source prop on the fly
was_jsx_element: bool = false,
pub fn hasSameFlagsAs(a: *Call, b: *Call) bool {
return (a.optional_chain == b.optional_chain and
a.is_direct_eval == b.is_direct_eval and
a.can_be_unwrapped_if_unused == b.can_be_unwrapped_if_unused);
}
};
pub const Dot = struct {
// target is Node
target: ExprNodeIndex,
name: string,
name_loc: logger.Loc,
optional_chain: ?OptionalChain = null,
// If true, this property access is known to be free of side-effects. That
// means it can be removed if the resulting value isn't used.
can_be_removed_if_unused: bool = false,
// If true, this property access is a function that, when called, can be
// unwrapped if the resulting value is unused. Unwrapping means discarding
// the call target but keeping any arguments with side effects.
call_can_be_unwrapped_if_unused: bool = false,
pub fn hasSameFlagsAs(a: *Dot, b: *Dot) bool {
return (a.optional_chain == b.optional_chain and
a.is_direct_eval == b.is_direct_eval and
a.can_be_unwrapped_if_unused == b.can_be_unwrapped_if_unused and a.call_can_be_unwrapped_if_unused == b.call_can_be_unwrapped_if_unused);
}
};
pub const Index = struct {
index: ExprNodeIndex,
target: ExprNodeIndex,
optional_chain: ?OptionalChain = null,
pub fn hasSameFlagsAs(a: *Index, b: *Index) bool {
return (a.optional_chain == b.optional_chain);
}
};
pub const Arrow = struct {
args: []G.Arg,
body: G.FnBody,
is_async: bool = false,
has_rest_arg: bool = false,
prefer_expr: bool = false, // Use shorthand if true and "Body" is a single return statement
};
pub const Function = struct { func: G.Fn };
pub const Identifier = packed struct {
ref: Ref = Ref.None,
// If we're inside a "with" statement, this identifier may be a property
// access. In that case it would be incorrect to remove this identifier since
// the property access may be a getter or setter with side effects.
must_keep_due_to_with_stmt: bool = false,
// If true, this identifier is known to not have a side effect (i.e. to not
// throw an exception) when referenced. If false, this identifier may or may
// not have side effects when referenced. This is used to allow the removal
// of known globals such as "Object" if they aren't used.
can_be_removed_if_unused: bool = false,
// If true, this identifier represents a function that, when called, can be
// unwrapped if the resulting value is unused. Unwrapping means discarding
// the call target but keeping any arguments with side effects.
call_can_be_unwrapped_if_unused: bool = false,
};
// This is similar to an EIdentifier but it represents a reference to an ES6
// import item.
//
// Depending on how the code is linked, the file containing this EImportIdentifier
// may or may not be in the same module group as the file it was imported from.
//
// If it's the same module group than we can just merge the import item symbol
// with the corresponding symbol that was imported, effectively renaming them
// to be the same thing and statically binding them together.
//
// But if it's a different module group, then the import must be dynamically
// evaluated using a property access off the corresponding namespace symbol,
// which represents the result of a require() call.
//
// It's stored as a separate type so it's not easy to confuse with a plain
// identifier. For example, it'd be bad if code trying to convert "{x: x}" into
// "{x}" shorthand syntax wasn't aware that the "x" in this case is actually
// "{x: importedNamespace.x}". This separate type forces code to opt-in to
// doing this instead of opt-out.
pub const ImportIdentifier = packed struct {
ref: Ref,
// If true, this was originally an identifier expression such as "foo". If
// false, this could potentially have been a member access expression such
// as "ns.foo" off of an imported namespace object.
was_originally_identifier: bool = false,
};
// This is similar to EIdentifier but it represents class-private fields and
// methods. It can be used where computed properties can be used, such as
// EIndex and Property.
pub const PrivateIdentifier = struct {
ref: Ref,
};
/// In development mode, the new JSX transform has a few special props
/// - `React.jsxDEV(type, arguments, key, isStaticChildren, source, self)`
/// - `arguments`:
/// ```{ ...props, children: children, }```
/// - `source`: https://github.com/babel/babel/blob/ef87648f3f05ccc393f89dea7d4c7c57abf398ce/packages/babel-plugin-transform-react-jsx-source/src/index.js#L24-L48
/// ```{
/// fileName: string | null,
/// columnNumber: number | null,
/// lineNumber: number | null,
/// }```
/// - `children`:
/// - multiple children? the function is React.jsxsDEV, "jsxs" instead of "jsx"
/// - one child? the function is React.jsxDEV,
/// - no children? the function is React.jsxDEV and children is an empty array.
/// `isStaticChildren`: https://github.com/facebook/react/blob/4ca62cac45c288878d2532e5056981d177f9fdac/packages/react/src/jsx/ReactJSXElementValidator.js#L369-L384
/// This flag means children is an array of JSX Elements literals.
/// The documentation on this is sparse, but it appears that
/// React just calls Object.freeze on the children array.
/// Object.freeze, historically, is quite a bit slower[0] than just not doing that.
/// Given that...I am choosing to always pass "false" to this.
/// This also skips extra state that we'd need to track.
/// If React Fast Refresh ends up using this later, then we can revisit this decision.
/// [0]: https://github.com/automerge/automerge/issues/177
pub const JSXElement = struct {
/// null represents a fragment
tag: ?ExprNodeIndex = null,
/// props
properties: []G.Property = &([_]G.Property{}),
/// element children
children: ExprNodeList = &([_]ExprNodeIndex{}),
/// key is the key prop like <ListItem key="foo">
key: ?ExprNodeIndex = null,
flags: Flags.JSXElement = Flags.JSXElement{},
pub const SpecialProp = enum {
__self, // old react transform used this as a prop
__source,
key,
any,
pub const Map = std.ComptimeStringMap(SpecialProp, .{
.{ "__self", .__self },
.{ "__source", .__source },
.{ "key", .key },
});
};
};
pub const Missing = struct {
pub fn jsonStringify(self: *const @This(), opts: anytype, o: anytype) !void {
return try std.json.stringify(null, opts, o);
}
};
pub const Number = struct {
value: f64,
pub fn jsonStringify(self: *const Number, opts: anytype, o: anytype) !void {
return try std.json.stringify(self.value, opts, o);
}
};
pub const BigInt = struct {
value: string,
pub fn jsonStringify(self: *const @This(), opts: anytype, o: anytype) !void {
return try std.json.stringify(self.value, opts, o);
}
};
pub const Object = struct {
properties: []G.Property = &([_]G.Property{}),
comma_after_spread: ?logger.Loc = null,
is_single_line: bool = false,
is_parenthesized: bool = false,
};
pub const Spread = struct { value: ExprNodeIndex };
pub const String = struct {
value: JavascriptString = &([_]u16{}),
utf8: string = &([_]u8{}),
legacy_octal_loc: ?logger.Loc = null,
prefer_template: bool = false,
pub fn isUTF8(s: *const String) bool {
return s.utf8.len > 0;
}
pub fn eql(s: *const String, comptime _t: type, other: anytype) bool {
if (s.isUTF8()) {
switch (_t) {
@This() => {
if (other.isUTF8()) {
return strings.eql(s.utf8, other.utf8);
} else {
return strings.utf16EqlString(other.value, s.utf8);
}
},
string => {
return strings.eql(s.utf8, other);
},
JavascriptString => {
return strings.utf16EqlString(other, s.utf8);
},
else => {
@compileError("Invalid type");
},
}
} else {
switch (_t) {
@This() => {
if (other.isUTF8()) {
return strings.utf16EqlString(s.value, other.utf8);
} else {
return std.mem.eql(u16, other.value, s.value);
}
},
string => {
return strings.utf16EqlString(s.value, other);
},
JavascriptString => {
return std.mem.eql(u16, other.value, s.value);
},
else => {
@compileError("Invalid type");
},
}
}
}
pub fn string(s: *const String, allocator: *std.mem.Allocator) !string {
if (s.isUTF8()) {
return s.utf8;
} else {
return strings.toUTF8Alloc(allocator, s.value);
}
}
pub fn jsonStringify(s: *const String, options: anytype, writer: anytype) !void {
var buf = [_]u8{0} ** 4096;
var i: usize = 0;
for (s.value) |char| {
buf[i] = @intCast(u8, char);
i += 1;
if (i >= 4096) {
break;
}
}
return try std.json.stringify(buf[0..i], options, writer);
}
};
// value is in the Node
pub const TemplatePart = struct {
value: ExprNodeIndex,
tail_loc: logger.Loc,
tail: JavascriptString,
tail_raw: string,
};
pub const Template = struct {
tag: ?ExprNodeIndex = null,
head: JavascriptString,
head_raw: string, // This is only filled out for tagged template literals
parts: []TemplatePart = &([_]TemplatePart{}),
legacy_octal_loc: logger.Loc = logger.Loc.Empty,
};
pub const RegExp = struct {
value: string,
pub fn jsonStringify(self: *const RegExp, opts: anytype, o: anytype) !void {
return try std.json.stringify(self.value, opts, o);
}
};
pub const Class = G.Class;
pub const Await = struct {
value: ExprNodeIndex,
};
pub const Yield = struct {
value: ?ExprNodeIndex = null,
is_star: bool = false,
};
pub const If = struct {
test_: ExprNodeIndex,
yes: ExprNodeIndex,
no: ExprNodeIndex,
};
pub const Require = struct {
import_record_index: u32 = 0,
};
pub const RequireOrRequireResolve = struct {
import_record_index: u32 = 0,
};
pub const Import = struct {
expr: ExprNodeIndex,
import_record_index: u32,
// Comments inside "import()" expressions have special meaning for Webpack.
// Preserving comments inside these expressions makes it possible to use
// esbuild as a TypeScript-to-JavaScript frontend for Webpack to improve
// performance. We intentionally do not interpret these comments in esbuild
// because esbuild is not Webpack. But we do preserve them since doing so is
// harmless, easy to maintain, and useful to people. See the Webpack docs for
// more info: https://webpack.js.org/api/module-methods/#magic-comments.
// TODO:
leading_interior_comments: []G.Comment = &([_]G.Comment{}),
};
};
pub const Stmt = struct {
loc: logger.Loc,
data: Data,
const Serializable = struct {
@"type": Tag,
object: string,
value: Data,
loc: logger.Loc,
};
pub fn jsonStringify(self: *const Stmt, options: anytype, writer: anytype) !void {
return try std.json.stringify(Serializable{ .@"type" = std.meta.activeTag(self.data), .object = "stmt", .value = self.data, .loc = self.loc }, options, writer);
}
pub fn isTypeScript(self: *Stmt) bool {
return @as(Stmt.Tag, self.data) == .s_type_script;
}
pub fn empty() Stmt {
return Stmt.init(&Stmt.None, logger.Loc.Empty);
}
var None = S.Empty{};
pub fn init(origData: anytype, loc: logger.Loc) Stmt {
if (@typeInfo(@TypeOf(origData)) != .Pointer) {
@compileError("Stmt.init needs a pointer.");
}
switch (@TypeOf(origData.*)) {
S.Block => {
return Stmt.comptime_init("s_block", S.Block, origData, loc);
},
S.Break => {
return Stmt.comptime_init("s_break", S.Break, origData, loc);
},
S.Class => {
return Stmt.comptime_init("s_class", S.Class, origData, loc);
},
S.Comment => {
return Stmt.comptime_init("s_comment", S.Comment, origData, loc);
},
S.Continue => {
return Stmt.comptime_init("s_continue", S.Continue, origData, loc);
},
S.Debugger => {
return Stmt.comptime_init("s_debugger", S.Debugger, origData, loc);
},
S.Directive => {
return Stmt.comptime_init("s_directive", S.Directive, origData, loc);
},
S.DoWhile => {
return Stmt.comptime_init("s_do_while", S.DoWhile, origData, loc);
},
S.Empty => {
return Stmt.comptime_init("s_empty", S.Empty, origData, loc);
},
S.Enum => {
return Stmt.comptime_init("s_enum", S.Enum, origData, loc);
},
S.ExportClause => {
return Stmt.comptime_init("s_export_clause", S.ExportClause, origData, loc);
},
S.ExportDefault => {
return Stmt.comptime_init("s_export_default", S.ExportDefault, origData, loc);
},
S.ExportEquals => {
return Stmt.comptime_init("s_export_equals", S.ExportEquals, origData, loc);
},
S.ExportFrom => {
return Stmt.comptime_init("s_export_from", S.ExportFrom, origData, loc);
},
S.ExportStar => {
return Stmt.comptime_init("s_export_star", S.ExportStar, origData, loc);
},
S.SExpr => {
return Stmt.comptime_init("s_expr", S.SExpr, origData, loc);
},
S.ForIn => {
return Stmt.comptime_init("s_for_in", S.ForIn, origData, loc);
},
S.ForOf => {
return Stmt.comptime_init("s_for_of", S.ForOf, origData, loc);
},
S.For => {
return Stmt.comptime_init("s_for", S.For, origData, loc);
},
S.Function => {
return Stmt.comptime_init("s_function", S.Function, origData, loc);
},
S.If => {
return Stmt.comptime_init("s_if", S.If, origData, loc);
},
S.Import => {
return Stmt.comptime_init("s_import", S.Import, origData, loc);
},
S.Label => {
return Stmt.comptime_init("s_label", S.Label, origData, loc);
},
S.LazyExport => {
return Stmt.comptime_init("s_lazy_export", S.LazyExport, origData, loc);
},
S.Local => {
return Stmt.comptime_init("s_local", S.Local, origData, loc);
},
S.Namespace => {
return Stmt.comptime_init("s_namespace", S.Namespace, origData, loc);
},
S.Return => {
return Stmt.comptime_init("s_return", S.Return, origData, loc);
},
S.Switch => {
return Stmt.comptime_init("s_switch", S.Switch, origData, loc);
},
S.Throw => {
return Stmt.comptime_init("s_throw", S.Throw, origData, loc);
},
S.Try => {
return Stmt.comptime_init("s_try", S.Try, origData, loc);
},
S.TypeScript => {
return Stmt.comptime_init("s_type_script", S.TypeScript, origData, loc);
},
S.While => {
return Stmt.comptime_init("s_while", S.While, origData, loc);
},
S.With => {
return Stmt.comptime_init("s_with", S.With, origData, loc);
},
else => {
@compileError("Invalid type in Stmt.init");
},
}
}
fn comptime_alloc(allocator: *std.mem.Allocator, comptime tag_name: string, comptime typename: type, origData: anytype, loc: logger.Loc) callconv(.Inline) Stmt {
var st = allocator.create(typename) catch unreachable;
st.* = origData;
return Stmt{ .loc = loc, .data = @unionInit(Data, tag_name, st) };
}
fn comptime_init(comptime tag_name: string, comptime typename: type, origData: anytype, loc: logger.Loc) callconv(.Inline) Stmt {
return Stmt{ .loc = loc, .data = @unionInit(Data, tag_name, origData) };
}
pub fn alloc(allocator: *std.mem.Allocator, origData: anytype, loc: logger.Loc) Stmt {
switch (@TypeOf(origData)) {
S.Block => {
return Stmt.comptime_alloc(allocator, "s_block", S.Block, origData, loc);
},
S.Break => {
return Stmt.comptime_alloc(allocator, "s_break", S.Break, origData, loc);
},
S.Class => {
return Stmt.comptime_alloc(allocator, "s_class", S.Class, origData, loc);
},
S.Comment => {
return Stmt.comptime_alloc(allocator, "s_comment", S.Comment, origData, loc);
},
S.Continue => {
return Stmt.comptime_alloc(allocator, "s_continue", S.Continue, origData, loc);
},
S.Debugger => {
return Stmt.comptime_alloc(allocator, "s_debugger", S.Debugger, origData, loc);
},
S.Directive => {
return Stmt.comptime_alloc(allocator, "s_directive", S.Directive, origData, loc);
},
S.DoWhile => {
return Stmt.comptime_alloc(allocator, "s_do_while", S.DoWhile, origData, loc);
},
S.Empty => {
return Stmt.comptime_alloc(allocator, "s_empty", S.Empty, origData, loc);
},
S.Enum => {
return Stmt.comptime_alloc(allocator, "s_enum", S.Enum, origData, loc);
},
S.ExportClause => {
return Stmt.comptime_alloc(allocator, "s_export_clause", S.ExportClause, origData, loc);
},
S.ExportDefault => {
return Stmt.comptime_alloc(allocator, "s_export_default", S.ExportDefault, origData, loc);
},
S.ExportEquals => {
return Stmt.comptime_alloc(allocator, "s_export_equals", S.ExportEquals, origData, loc);
},
S.ExportFrom => {
return Stmt.comptime_alloc(allocator, "s_export_from", S.ExportFrom, origData, loc);
},
S.ExportStar => {
return Stmt.comptime_alloc(allocator, "s_export_star", S.ExportStar, origData, loc);
},
S.SExpr => {
return Stmt.comptime_alloc(allocator, "s_expr", S.SExpr, origData, loc);
},
S.ForIn => {
return Stmt.comptime_alloc(allocator, "s_for_in", S.ForIn, origData, loc);
},
S.ForOf => {
return Stmt.comptime_alloc(allocator, "s_for_of", S.ForOf, origData, loc);
},
S.For => {
return Stmt.comptime_alloc(allocator, "s_for", S.For, origData, loc);
},
S.Function => {
return Stmt.comptime_alloc(allocator, "s_function", S.Function, origData, loc);
},
S.If => {
return Stmt.comptime_alloc(allocator, "s_if", S.If, origData, loc);
},
S.Import => {
return Stmt.comptime_alloc(allocator, "s_import", S.Import, origData, loc);
},
S.Label => {
return Stmt.comptime_alloc(allocator, "s_label", S.Label, origData, loc);
},
S.LazyExport => {
return Stmt.comptime_alloc(allocator, "s_lazy_export", S.LazyExport, origData, loc);
},
S.Local => {
return Stmt.comptime_alloc(allocator, "s_local", S.Local, origData, loc);
},
S.Namespace => {
return Stmt.comptime_alloc(allocator, "s_namespace", S.Namespace, origData, loc);
},
S.Return => {
return Stmt.comptime_alloc(allocator, "s_return", S.Return, origData, loc);
},
S.Switch => {
return Stmt.comptime_alloc(allocator, "s_switch", S.Switch, origData, loc);
},
S.Throw => {
return Stmt.comptime_alloc(allocator, "s_throw", S.Throw, origData, loc);
},
S.Try => {
return Stmt.comptime_alloc(allocator, "s_try", S.Try, origData, loc);
},
S.TypeScript => {
return Stmt.comptime_alloc(allocator, "s_type_script", S.TypeScript, origData, loc);
},
S.While => {
return Stmt.comptime_alloc(allocator, "s_while", S.While, origData, loc);
},
S.With => {
return Stmt.comptime_alloc(allocator, "s_with", S.With, origData, loc);
},
else => {
@compileError("Invalid type in Stmt.init");
},
}
}
pub const Tag = packed enum {
s_block,
s_break,
s_class,
s_comment,
s_continue,
s_debugger,
s_directive,
s_do_while,
s_empty,
s_enum,
s_export_clause,
s_export_default,
s_export_equals,
s_export_from,
s_export_star,
s_expr,
s_for_in,
s_for_of,
s_for,
s_function,
s_if,
s_import,
s_label,
s_lazy_export,
s_local,
s_namespace,
s_return,
s_switch,
s_throw,
s_try,
s_type_script,
s_while,
s_with,
};
pub const Data = union(Tag) {
s_block: *S.Block,
s_break: *S.Break,
s_class: *S.Class,
s_comment: *S.Comment,
s_continue: *S.Continue,
s_debugger: *S.Debugger,
s_directive: *S.Directive,
s_do_while: *S.DoWhile,
s_empty: *S.Empty,
s_enum: *S.Enum,
s_export_clause: *S.ExportClause,
s_export_default: *S.ExportDefault,
s_export_equals: *S.ExportEquals,
s_export_from: *S.ExportFrom,
s_export_star: *S.ExportStar,
s_expr: *S.SExpr,
s_for_in: *S.ForIn,
s_for_of: *S.ForOf,
s_for: *S.For,
s_function: *S.Function,
s_if: *S.If,
s_import: *S.Import,
s_label: *S.Label,
s_lazy_export: *S.LazyExport,
s_local: *S.Local,
s_namespace: *S.Namespace,
s_return: *S.Return,
s_switch: *S.Switch,
s_throw: *S.Throw,
s_try: *S.Try,
s_type_script: *S.TypeScript,
s_while: *S.While,
s_with: *S.With,
};
pub fn caresAboutScope(self: *Stmt) bool {
return switch (self.data) {
.s_block, .s_empty, .s_debugger, .s_expr, .s_if, .s_for, .s_for_in, .s_for_of, .s_do_while, .s_while, .s_with, .s_try, .s_switch, .s_return, .s_throw, .s_break, .s_continue, .s_directive => {
return false;
},
.s_local => |local| {
return local.kind != Kind.k_var;
},
else => {
return true;
},
};
}
};
pub const Expr = struct {
loc: logger.Loc,
data: Data,
pub const Query = struct { expr: Expr, loc: logger.Loc };
pub fn getProperty(expr: *const Expr, name: string) ?Query {
if (std.meta.activeTag(expr.data) != .e_object) return null;
const obj: *const E.Object = expr.data.e_object;
for (obj.properties) |prop| {
const value = prop.value orelse continue;
const key = prop.key orelse continue;
if (std.meta.activeTag(key.data) != .e_string) continue;
const key_str: *const E.String = key.data.e_string;
if (key_str.eql(string, name)) {
return Query{ .expr = value, .loc = key.loc };
}
}
return null;
}
pub fn getString(expr: *const Expr, allocator: *std.mem.Allocator) ?string {
if (std.meta.activeTag(expr.data) != .e_string) return null;
const key_str: *const E.String = expr.data.e_string;
return if (key_str.isUTF8()) key_str.utf8 else key_str.string(allocator) catch null;
}
pub fn getBool(
expr: *const Expr,
) ?bool {
if (std.meta.activeTag(expr.data) != .e_boolean) return null;
const obj = expr.data.e_boolean;
return obj.value;
}
pub const EFlags = enum { none, ts_decorator };
const Serializable = struct {
@"type": Tag,
object: string,
value: Data,
loc: logger.Loc,
};
pub fn isMissing(a: *const Expr) bool {
return std.meta.activeTag(a.data) == Expr.Tag.e_missing;
}
pub fn joinWithComma(a: Expr, b: Expr, allocator: *std.mem.Allocator) Expr {
if (a.isMissing()) {
return b;
}
if (b.isMissing()) {
return a;
}
return Expr.alloc(allocator, E.Binary{ .op = .bin_comma, .left = a, .right = b }, a.loc);
}
pub fn joinAllWithComma(all: []Expr, allocator: *std.mem.Allocator) Expr {
std.debug.assert(all.len > 0);
switch (all.len) {
1 => {
return all[0];
},
2 => {
return Expr.joinWithComma(all[0], all[1], allocator);
},
else => {
var expr = Expr.joinWithComma(all[0], all[1], allocator);
var _all = all[2 .. all.len - 1];
for (_all) |right| {
expr = Expr.joinWithComma(expr, right, allocator);
}
return expr;
},
}
}
pub fn jsonStringify(self: *const @This(), options: anytype, writer: anytype) !void {
return try std.json.stringify(Serializable{ .@"type" = std.meta.activeTag(self.data), .object = "expr", .value = self.data, .loc = self.loc }, options, writer);
}
pub fn extractNumericValues(left: Expr.Data, right: Expr.Data) ?[2]f64 {
if (!(@as(Expr.Tag, left) == .e_number and @as(Expr.Tag, right) == .e_number)) {
return null;
}
return [2]f64{ left.e_number.value, right.e_number.value };
}
pub fn isAnonymousNamed(e: *Expr) bool {
switch (e.data) {
.e_arrow => {
return true;
},
.e_function => |func| {
return func.func.name == null;
},
.e_class => |class| {
return class.class_name == null;
},
else => {
return false;
},
}
}
pub fn init(exp: anytype, loc: logger.Loc) Expr {
switch (@TypeOf(exp)) {
*E.Array => {
return Expr{
.loc = loc,
.data = Data{ .e_array = exp },
};
},
*E.Unary => {
return Expr{
.loc = loc,
.data = Data{ .e_unary = exp },
};
},
*E.Binary => {
return Expr{
.loc = loc,
.data = Data{ .e_binary = exp },
};
},
*E.This => {
return Expr{
.loc = loc,
.data = Data{ .e_this = exp },
};
},
*E.Boolean => {
return Expr{
.loc = loc,
.data = Data{ .e_boolean = exp },
};
},
*E.Super => {
return Expr{
.loc = loc,
.data = Data{ .e_super = exp },
};
},
*E.Null => {
return Expr{
.loc = loc,
.data = Data{ .e_null = exp },
};
},
*E.Undefined => {
return Expr{
.loc = loc,
.data = Data{ .e_undefined = exp },
};
},
*E.New => {
return Expr{
.loc = loc,
.data = Data{ .e_new = exp },
};
},
*E.NewTarget => {
return Expr{
.loc = loc,
.data = Data{ .e_new_target = exp },
};
},
*E.Function => {
return Expr{
.loc = loc,
.data = Data{ .e_function = exp },
};
},
*E.ImportMeta => {
return Expr{
.loc = loc,
.data = Data{ .e_import_meta = exp },
};
},
*E.Call => {
return Expr{
.loc = loc,
.data = Data{ .e_call = exp },
};
},
*E.Dot => {
return Expr{
.loc = loc,
.data = Data{ .e_dot = exp },
};
},
*E.Index => {
return Expr{
.loc = loc,
.data = Data{ .e_index = exp },
};
},
*E.Arrow => {
return Expr{
.loc = loc,
.data = Data{ .e_arrow = exp },
};
},
*E.Identifier => {
return Expr{
.loc = loc,
.data = Data{ .e_identifier = exp },
};
},
*E.ImportIdentifier => {
return Expr{
.loc = loc,
.data = Data{ .e_import_identifier = exp },
};
},
*E.PrivateIdentifier => {
return Expr{
.loc = loc,
.data = Data{ .e_private_identifier = exp },
};
},
*E.JSXElement => {
return Expr{
.loc = loc,
.data = Data{ .e_jsx_element = exp },
};
},
*E.Missing => {
return Expr{
.loc = loc,
.data = Data{ .e_missing = exp },
};
},
*E.Number => {
return Expr{
.loc = loc,
.data = Data{ .e_number = exp },
};
},
*E.BigInt => {
return Expr{
.loc = loc,
.data = Data{ .e_big_int = exp },
};
},
*E.Object => {
return Expr{
.loc = loc,
.data = Data{ .e_object = exp },
};
},
*E.Spread => {
return Expr{
.loc = loc,
.data = Data{ .e_spread = exp },
};
},
*E.String => {
return Expr{
.loc = loc,
.data = Data{ .e_string = exp },
};
},
*E.TemplatePart => {
return Expr{
.loc = loc,
.data = Data{ .e_template_part = exp },
};
},
*E.Class => {
return Expr{
.loc = loc,
.data = Data{ .e_class = exp },
};
},
*E.Template => {
return Expr{
.loc = loc,
.data = Data{ .e_template = exp },
};
},
*E.RegExp => {
return Expr{
.loc = loc,
.data = Data{ .e_reg_exp = exp },
};
},
*E.Await => {
return Expr{
.loc = loc,
.data = Data{ .e_await = exp },
};
},
*E.Yield => {
return Expr{
.loc = loc,
.data = Data{ .e_yield = exp },
};
},
*E.If => {
return Expr{
.loc = loc,
.data = Data{ .e_if = exp },
};
},
*E.Import => {
return Expr{
.loc = loc,
.data = Data{ .e_import = exp },
};
},
*E.Require => {
return Expr{
.loc = loc,
.data = Data{ .e_require = exp },
};
},
*E.RequireOrRequireResolve => {
return Expr{
.loc = loc,
.data = Data{ .e_require_or_require_resolve = exp },
};
},
else => {
@compileError("Expr.init needs a pointer to E.*");
},
}
}
pub fn alloc(allocator: *std.mem.Allocator, st: anytype, loc: logger.Loc) Expr {
switch (@TypeOf(st)) {
E.Array => {
var dat = allocator.create(E.Array) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_array = dat } };
},
E.Class => {
var dat = allocator.create(E.Class) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_class = dat } };
},
E.Unary => {
var dat = allocator.create(E.Unary) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_unary = dat } };
},
E.Binary => {
var dat = allocator.create(E.Binary) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_binary = dat } };
},
E.This => {
var dat = allocator.create(E.This) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_this = dat } };
},
E.Boolean => {
var dat = allocator.create(E.Boolean) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_boolean = dat } };
},
E.Super => {
var dat = allocator.create(E.Super) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_super = dat } };
},
E.Null => {
var dat = allocator.create(E.Null) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_null = dat } };
},
E.Undefined => {
var dat = allocator.create(E.Undefined) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_undefined = dat } };
},
E.New => {
var dat = allocator.create(E.New) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_new = dat } };
},
E.NewTarget => {
var dat = allocator.create(E.NewTarget) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_new_target = dat } };
},
E.Function => {
var dat = allocator.create(E.Function) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_function = dat } };
},
E.ImportMeta => {
var dat = allocator.create(E.ImportMeta) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_import_meta = dat } };
},
E.Call => {
var dat = allocator.create(E.Call) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_call = dat } };
},
E.Dot => {
var dat = allocator.create(E.Dot) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_dot = dat } };
},
E.Index => {
var dat = allocator.create(E.Index) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_index = dat } };
},
E.Arrow => {
var dat = allocator.create(E.Arrow) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_arrow = dat } };
},
E.Identifier => {
var dat = allocator.create(E.Identifier) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_identifier = dat } };
},
E.ImportIdentifier => {
var dat = allocator.create(E.ImportIdentifier) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_import_identifier = dat } };
},
E.PrivateIdentifier => {
var dat = allocator.create(E.PrivateIdentifier) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_private_identifier = dat } };
},
E.JSXElement => {
var dat = allocator.create(E.JSXElement) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_jsx_element = dat } };
},
E.Missing => {
var dat = allocator.create(E.Missing) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_missing = dat } };
},
E.Number => {
var dat = allocator.create(E.Number) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_number = dat } };
},
E.BigInt => {
var dat = allocator.create(E.BigInt) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_big_int = dat } };
},
E.Object => {
var dat = allocator.create(E.Object) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_object = dat } };
},
E.Spread => {
var dat = allocator.create(E.Spread) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_spread = dat } };
},
E.String => {
var dat = allocator.create(E.String) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_string = dat } };
},
E.TemplatePart => {
var dat = allocator.create(E.TemplatePart) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_template_part = dat } };
},
E.Template => {
var dat = allocator.create(E.Template) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_template = dat } };
},
E.RegExp => {
var dat = allocator.create(E.RegExp) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_reg_exp = dat } };
},
E.Await => {
var dat = allocator.create(E.Await) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_await = dat } };
},
E.Yield => {
var dat = allocator.create(E.Yield) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_yield = dat } };
},
E.If => {
var dat = allocator.create(E.If) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_if = dat } };
},
E.RequireOrRequireResolve => {
var dat = allocator.create(E.RequireOrRequireResolve) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_require_or_require_resolve = dat } };
},
E.Import => {
var dat = allocator.create(E.Import) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_import = dat } };
},
E.Require => {
var dat = allocator.create(E.Require) catch unreachable;
dat.* = st;
return Expr{ .loc = loc, .data = Data{ .e_require = dat } };
},
else => {
@compileError("Invalid type passed to Expr.init");
},
}
}
pub const Tag = packed enum {
e_array,
e_unary,
e_binary,
e_boolean,
e_super,
e_null,
e_undefined,
e_new,
e_function,
e_new_target,
e_import_meta,
e_call,
e_dot,
e_index,
e_arrow,
e_identifier,
e_import_identifier,
e_private_identifier,
e_jsx_element,
e_missing,
e_number,
e_big_int,
e_object,
e_spread,
e_string,
e_template_part,
e_template,
e_reg_exp,
e_await,
e_yield,
e_if,
e_require_or_require_resolve,
e_import,
e_this,
e_class,
e_require,
pub fn isArray(self: Tag) bool {
switch (self) {
.e_array => {
return true;
},
else => {
return false;
},
}
}
pub fn isUnary(self: Tag) bool {
switch (self) {
.e_unary => {
return true;
},
else => {
return false;
},
}
}
pub fn isBinary(self: Tag) bool {
switch (self) {
.e_binary => {
return true;
},
else => {
return false;
},
}
}
pub fn isThis(self: Tag) bool {
switch (self) {
.e_this => {
return true;
},
else => {
return false;
},
}
}
pub fn isClass(self: Tag) bool {
switch (self) {
.e_class => {
return true;
},
else => {
return false;
},
}
}
pub fn isBoolean(self: Tag) bool {
switch (self) {
.e_boolean => {
return true;
},
else => {
return false;
},
}
}
pub fn isSuper(self: Tag) bool {
switch (self) {
.e_super => {
return true;
},
else => {
return false;
},
}
}
pub fn isNull(self: Tag) bool {
switch (self) {
.e_null => {
return true;
},
else => {
return false;
},
}
}
pub fn isUndefined(self: Tag) bool {
switch (self) {
.e_undefined => {
return true;
},
else => {
return false;
},
}
}
pub fn isNew(self: Tag) bool {
switch (self) {
.e_new => {
return true;
},
else => {
return false;
},
}
}
pub fn isNewTarget(self: Tag) bool {
switch (self) {
.e_new_target => {
return true;
},
else => {
return false;
},
}
}
pub fn isFunction(self: Tag) bool {
switch (self) {
.e_function => {
return true;
},
else => {
return false;
},
}
}
pub fn isImportMeta(self: Tag) bool {
switch (self) {
.e_import_meta => {
return true;
},
else => {
return false;
},
}
}
pub fn isCall(self: Tag) bool {
switch (self) {
.e_call => {
return true;
},
else => {
return false;
},
}
}
pub fn isDot(self: Tag) bool {
switch (self) {
.e_dot => {
return true;
},
else => {
return false;
},
}
}
pub fn isIndex(self: Tag) bool {
switch (self) {
.e_index => {
return true;
},
else => {
return false;
},
}
}
pub fn isArrow(self: Tag) bool {
switch (self) {
.e_arrow => {
return true;
},
else => {
return false;
},
}
}
pub fn isIdentifier(self: Tag) bool {
switch (self) {
.e_identifier => {
return true;
},
else => {
return false;
},
}
}
pub fn isImportIdentifier(self: Tag) bool {
switch (self) {
.e_import_identifier => {
return true;
},
else => {
return false;
},
}
}
pub fn isPrivateIdentifier(self: Tag) bool {
switch (self) {
.e_private_identifier => {
return true;
},
else => {
return false;
},
}
}
pub fn isJsxElement(self: Tag) bool {
switch (self) {
.e_jsx_element => {
return true;
},
else => {
return false;
},
}
}
pub fn isMissing(self: Tag) bool {
switch (self) {
.e_missing => {
return true;
},
else => {
return false;
},
}
}
pub fn isNumber(self: Tag) bool {
switch (self) {
.e_number => {
return true;
},
else => {
return false;
},
}
}
pub fn isBigInt(self: Tag) bool {
switch (self) {
.e_big_int => {
return true;
},
else => {
return false;
},
}
}
pub fn isObject(self: Tag) bool {
switch (self) {
.e_object => {
return true;
},
else => {
return false;
},
}
}
pub fn isSpread(self: Tag) bool {
switch (self) {
.e_spread => {
return true;
},
else => {
return false;
},
}
}
pub fn isString(self: Tag) bool {
switch (self) {
.e_string => {
return true;
},
else => {
return false;
},
}
}
pub fn isTemplatePart(self: Tag) bool {
switch (self) {
.e_template_part => {
return true;
},
else => {
return false;
},
}
}
pub fn isTemplate(self: Tag) bool {
switch (self) {
.e_template => {
return true;
},
else => {
return false;
},
}
}
pub fn isRegExp(self: Tag) bool {
switch (self) {
.e_reg_exp => {
return true;
},
else => {
return false;
},
}
}
pub fn isAwait(self: Tag) bool {
switch (self) {
.e_await => {
return true;
},
else => {
return false;
},
}
}
pub fn isYield(self: Tag) bool {
switch (self) {
.e_yield => {
return true;
},
else => {
return false;
},
}
}
pub fn isIf(self: Tag) bool {
switch (self) {
.e_if => {
return true;
},
else => {
return false;
},
}
}
pub fn isRequireOrRequireResolve(self: Tag) bool {
switch (self) {
.e_require_or_require_resolve => {
return true;
},
else => {
return false;
},
}
}
pub fn isImport(self: Tag) bool {
switch (self) {
.e_import => {
return true;
},
else => {
return false;
},
}
}
};
pub fn isBoolean(a: Expr) bool {
switch (a.data) {
.e_boolean => {
return true;
},
.e_if => |ex| {
return isBoolean(ex.yes) and isBoolean(ex.no);
},
.e_unary => |ex| {
return ex.op == .un_not or ex.op == .un_delete;
},
.e_binary => |ex| {
switch (ex.op) {
.bin_strict_eq, .bin_strict_ne, .bin_loose_eq, .bin_loose_ne, .bin_lt, .bin_gt, .bin_le, .bin_ge, .bin_instanceof, .bin_in => {
return true;
},
.bin_logical_or => {
return isBoolean(ex.left) and isBoolean(ex.right);
},
.bin_logical_and => {
return isBoolean(ex.left) and isBoolean(ex.right);
},
else => {},
}
},
else => {},
}
return false;
}
pub fn assign(a: Expr, b: Expr, allocator: *std.mem.Allocator) Expr {
return alloc(allocator, E.Binary{
.op = .bin_assign,
.left = a,
.right = b,
}, a.loc);
}
pub fn at(expr: *Expr, t: anytype, allocator: *std.mem.Allocator) callconv(.Inline) Expr {
return alloc(allocator, t, expr.loc);
}
// Wraps the provided expression in the "!" prefix operator. The expression
// will potentially be simplified to avoid generating unnecessary extra "!"
// operators. For example, calling this with "!!x" will return "!x" instead
// of returning "!!!x".
pub fn not(expr: *Expr, allocator: *std.mem.Allocator) Expr {
return maybeSimplifyNot(expr, allocator) orelse expr.*;
}
// The given "expr" argument should be the operand of a "!" prefix operator
// (i.e. the "x" in "!x"). This returns a simplified expression for the
// whole operator (i.e. the "!x") if it can be simplified, or false if not.
// It's separate from "Not()" above to avoid allocation on failure in case
// that is undesired.
pub fn maybeSimplifyNot(expr: *Expr, allocator: *std.mem.Allocator) ?Expr {
switch (expr.data) {
.e_null, .e_undefined => {
return expr.at(E.Boolean{ .value = true }, allocator);
},
.e_boolean => |b| {
return expr.at(E.Boolean{ .value = b.value }, allocator);
},
.e_number => |n| {
return expr.at(E.Boolean{ .value = (n.value == 0 or std.math.isNan(n.value)) }, allocator);
},
.e_big_int => |b| {
return expr.at(E.Boolean{ .value = strings.eql(b.value, "0") }, allocator);
},
.e_function,
.e_arrow,
.e_reg_exp,
=> {
return expr.at(E.Boolean{ .value = false }, allocator);
},
// "!!!a" => "!a"
.e_unary => |un| {
if (un.op == Op.Code.un_not and isBoolean(un.value)) {
return un.value;
}
},
.e_binary => |ex| {
// TODO: evaluate whether or not it is safe to do this mutation since it's modifying in-place.
// Make sure that these transformations are all safe for special values.
// For example, "!(a < b)" is not the same as "a >= b" if a and/or b are
// NaN (or undefined, or null, or possibly other problem cases too).
switch (ex.op) {
Op.Code.bin_loose_eq => {
ex.op = .bin_loose_ne;
return expr.*;
},
Op.Code.bin_loose_ne => {
ex.op = .bin_loose_eq;
return expr.*;
},
Op.Code.bin_strict_eq => {
ex.op = .bin_strict_ne;
return expr.*;
},
Op.Code.bin_strict_ne => {
ex.op = .bin_strict_eq;
return expr.*;
},
Op.Code.bin_comma => {
ex.right = ex.right.not(allocator);
return expr.*;
},
else => {},
}
},
else => {},
}
return null;
}
pub fn assignStmt(a: Expr, b: Expr, allocator: *std.mem.Allocator) Stmt {
return Stmt.alloc(
allocator,
S.SExpr{
.value = Expr.assign(a, b, allocator),
},
a.loc,
);
}
pub fn isOptionalChain(self: *const @This()) bool {
return switch (self.data) {
.e_dot => |dot| dot.optional_chain != null,
.e_index => |dot| dot.optional_chain != null,
.e_call => |dot| dot.optional_chain != null,
else => false,
};
}
pub const Data = union(Tag) {
e_array: *E.Array,
e_unary: *E.Unary,
e_binary: *E.Binary,
e_this: *E.This,
e_class: *E.Class,
e_boolean: *E.Boolean,
e_super: *E.Super,
e_null: *E.Null,
e_undefined: *E.Undefined,
e_new: *E.New,
e_new_target: *E.NewTarget,
e_function: *E.Function,
e_import_meta: *E.ImportMeta,
e_call: *E.Call,
e_dot: *E.Dot,
e_index: *E.Index,
e_arrow: *E.Arrow,
e_identifier: *E.Identifier,
e_import_identifier: *E.ImportIdentifier,
e_private_identifier: *E.PrivateIdentifier,
e_jsx_element: *E.JSXElement,
e_missing: *E.Missing,
e_number: *E.Number,
e_big_int: *E.BigInt,
e_object: *E.Object,
e_spread: *E.Spread,
e_string: *E.String,
e_template_part: *E.TemplatePart,
e_template: *E.Template,
e_reg_exp: *E.RegExp,
e_await: *E.Await,
e_yield: *E.Yield,
e_if: *E.If,
e_require: *E.Require,
e_require_or_require_resolve: *E.RequireOrRequireResolve,
e_import: *E.Import,
pub fn isBooleanValue(self: *Expr) bool {
// TODO:
return false;
// return switch (self) {
// Expr.e_boolean => |dot| true,
// Expr.e_if => |dot| dot.optional_chain != OptionalChain.none,
// Expr.e_call => |dot| dot.optional_chain != OptionalChain.none,
// else => false,
// };
}
pub fn isNumericValue(self: *Expr) bool {
// TODO:
return false;
}
pub fn isStringValue(self: Data) callconv(.Inline) bool {
return @as(Expr.Tag, self) == .e_string;
}
};
};
pub const EnumValue = struct {
loc: logger.Loc,
ref: Ref,
name: JavascriptString,
value: ?ExprNodeIndex,
};
pub const S = struct {
pub const Block = struct { stmts: StmtNodeList };
pub const SExpr = struct {
value: ExprNodeIndex,
// This is set to true for automatically-generated expressions that should
// not affect tree shaking. For example, calling a function from the runtime
// that doesn't have externally-visible side effects.
does_not_affect_tree_shaking: bool = false,
};
pub const Comment = struct { text: string };
pub const Directive = struct { value: JavascriptString, legacy_octal_loc: ?logger.Loc = null };
pub const ExportClause = struct { items: []ClauseItem, is_single_line: bool = false };
pub const Empty = struct {};
pub const ExportStar = struct {
namespace_ref: Ref,
alias: ?G.ExportStarAlias = null,
import_record_index: u32,
};
// This is an "export = value;" statement in TypeScript
pub const ExportEquals = struct { value: ExprNodeIndex };
// The decision of whether to export an expression using "module.exports" or
// "export default" is deferred until linking using this statement kind
pub const LazyExport = struct { value: ExprNodeIndex };
pub const Label = struct { name: LocRef, stmt: StmtNodeIndex };
// This is a stand-in for a TypeScript type declaration
pub const TypeScript = struct {};
pub const Debugger = struct {};
pub const ExportFrom = struct {
items: []ClauseItem,
namespace_ref: Ref,
import_record_index: u32,
is_single_line: bool,
};
pub const ExportDefault = struct { default_name: LocRef, // value may be a SFunction or SClass
value: StmtOrExpr };
pub const Enum = struct {
name: LocRef,
arg: Ref,
values: []EnumValue,
is_export: bool,
};
pub const Namespace = struct {
name: LocRef,
arg: Ref,
stmts: StmtNodeList,
is_export: bool,
};
pub const Function = struct {
func: G.Fn,
};
pub const Class = struct { class: G.Class, is_export: bool = false };
pub const If = struct {
test_: ExprNodeIndex,
yes: StmtNodeIndex,
no: ?StmtNodeIndex,
};
pub const For = struct {
// May be a SConst, SLet, SVar, or SExpr
init: ?StmtNodeIndex = null, test_: ?ExprNodeIndex = null, update: ?ExprNodeIndex = null, body: StmtNodeIndex };
pub const ForIn = struct {
// May be a SConst, SLet, SVar, or SExpr
init: StmtNodeIndex, value: ExprNodeIndex, body: StmtNodeIndex };
pub const ForOf = struct {
is_await: bool = false,
// May be a SConst, SLet, SVar, or SExpr
init: StmtNodeIndex,
value: ExprNodeIndex,
body: StmtNodeIndex,
};
pub const DoWhile = struct { body: StmtNodeIndex, test_: ExprNodeIndex };
pub const While = struct {
test_: ExprNodeIndex,
body: StmtNodeIndex,
};
pub const With = struct {
value: ExprNodeIndex,
body: StmtNodeIndex,
body_loc: logger.Loc,
};
pub const Try = struct {
body_loc: logger.Loc,
body: StmtNodeList,
catch_: ?Catch = null,
finally: ?Finally = null,
};
pub const Switch = struct {
test_: ExprNodeIndex,
body_loc: logger.Loc,
cases: []Case,
};
// This object represents all of these types of import statements:
//
// import 'path'
// import {item1, item2} from 'path'
// import * as ns from 'path'
// import defaultItem, {item1, item2} from 'path'
// import defaultItem, * as ns from 'path'
//
// Many parts are optional and can be combined in different ways. The only
// restriction is that you cannot have both a clause and a star namespace.
pub const Import = struct {
// If this is a star import: This is a Ref for the namespace symbol. The Loc
// for the symbol is StarLoc.
//
// Otherwise: This is an auto-generated Ref for the namespace representing
// the imported file. In this case StarLoc is nil. The NamespaceRef is used
// when converting this module to a CommonJS module.
namespace_ref: Ref,
default_name: ?LocRef = null,
items: []ClauseItem = &([_]ClauseItem{}),
star_name_loc: ?logger.Loc = null,
import_record_index: u32,
is_single_line: bool = false,
};
pub const Return = struct { value: ?ExprNodeIndex = null };
pub const Throw = struct { value: ExprNodeIndex };
pub const Local = struct {
kind: Kind = Kind.k_var,
decls: []G.Decl,
is_export: bool = false,
// The TypeScript compiler doesn't generate code for "import foo = bar"
// statements where the import is never used.
was_ts_import_equals: bool = false,
pub const Kind = enum {
k_var,
k_let,
k_const,
};
};
pub const Break = struct {
label: ?LocRef = null,
};
pub const Continue = struct {
label: ?LocRef = null,
};
};
pub const Catch = struct {
loc: logger.Loc,
binding: ?BindingNodeIndex = null,
body: StmtNodeList,
};
pub const Finally = struct {
loc: logger.Loc,
stmts: StmtNodeList,
};
pub const Case = struct { loc: logger.Loc, value: ?ExprNodeIndex, body: StmtNodeList };
pub const Op = struct {
// If you add a new token, remember to add it to "Table" too
pub const Code = enum {
// Prefix
un_pos,
un_neg,
un_cpl,
un_not,
un_void,
un_typeof,
un_delete,
// Prefix update
un_pre_dec,
un_pre_inc,
// Postfix update
un_post_dec,
un_post_inc,
// Left-associative
bin_add,
bin_sub,
bin_mul,
bin_div,
bin_rem,
bin_pow,
bin_lt,
bin_le,
bin_gt,
bin_ge,
bin_in,
bin_instanceof,
bin_shl,
bin_shr,
bin_u_shr,
bin_loose_eq,
bin_loose_ne,
bin_strict_eq,
bin_strict_ne,
bin_nullish_coalescing,
bin_logical_or,
bin_logical_and,
bin_bitwise_or,
bin_bitwise_and,
bin_bitwise_xor,
// Non-associative
bin_comma,
// Right-associative
bin_assign,
bin_add_assign,
bin_sub_assign,
bin_mul_assign,
bin_div_assign,
bin_rem_assign,
bin_pow_assign,
bin_shl_assign,
bin_shr_assign,
bin_u_shr_assign,
bin_bitwise_or_assign,
bin_bitwise_and_assign,
bin_bitwise_xor_assign,
bin_nullish_coalescing_assign,
bin_logical_or_assign,
bin_logical_and_assign,
pub fn unaryAssignTarget(code: Op.Code) AssignTarget {
if (@enumToInt(code) >= @enumToInt(Op.Code.un_pre_dec) and @enumToInt(code) <= @enumToInt(Op.Code.un_post_inc)) {
return AssignTarget.update;
} else {
return AssignTarget.none;
}
}
pub fn isLeftAssociative(code: Op.Code) bool {
return @enumToInt(code) >= @enumToInt(Op.Code.bin_add) and @enumToInt(code) < @enumToInt(Op.Code.bin_comma) and code != .bin_pow;
}
pub fn isRightAssociative(code: Op.Code) bool {
return @enumToInt(code) >= @enumToInt(Op.Code.bin_assign) or code == .bin_pow;
}
pub fn binaryAssignTarget(code: Op.Code) AssignTarget {
if (code == .bin_assign) {
return AssignTarget.replace;
} else if (@enumToInt(code) > @enumToInt(Op.Code.bin_assign)) {
return .update;
} else {
return .none;
}
}
pub fn isPrefix(code: Op.Code) bool {
return @enumToInt(code) < @enumToInt(Op.Code.un_post_dec);
}
};
pub const Level = packed enum(u6) {
lowest,
comma,
spread,
yield,
assign,
conditional,
nullish_coalescing,
logical_or,
logical_and,
bitwise_or,
bitwise_xor,
bitwise_and,
equals,
compare,
shift,
add,
multiply,
exponentiation,
prefix,
postfix,
new,
call,
member,
pub fn lt(self: Level, b: Level) bool {
return @enumToInt(self) < @enumToInt(b);
}
pub fn gt(self: Level, b: Level) bool {
return @enumToInt(self) > @enumToInt(b);
}
pub fn gte(self: Level, b: Level) bool {
return @enumToInt(self) >= @enumToInt(b);
}
pub fn lte(self: Level, b: Level) bool {
return @enumToInt(self) <= @enumToInt(b);
}
pub fn eql(self: Level, b: Level) bool {
return @enumToInt(self) == @enumToInt(b);
}
pub fn sub(self: Level, i: anytype) Level {
return @intToEnum(Level, @enumToInt(self) - i);
}
pub fn add(self: Level, i: anytype) Level {
return @intToEnum(Level, @enumToInt(self) + i);
}
};
text: string,
level: Level,
is_keyword: bool = false,
pub fn init(triple: anytype) Op {
return Op{
.text = triple.@"0",
.level = triple.@"1",
.is_keyword = triple.@"2",
};
}
pub fn jsonStringify(self: *const @This(), opts: anytype, o: anytype) !void {
return try std.json.stringify(self.text, opts, o);
}
pub const TableType: std.EnumArray(Op.Code, Op);
pub const Table = comptime {
var table = std.EnumArray(Op.Code, Op).initUndefined();
// Prefix
table.set(Op.Code.un_pos, Op.init(.{ "+", Level.prefix, false }));
table.set(Op.Code.un_neg, Op.init(.{ "-", Level.prefix, false }));
table.set(Op.Code.un_cpl, Op.init(.{ "~", Level.prefix, false }));
table.set(Op.Code.un_not, Op.init(.{ "!", Level.prefix, false }));
table.set(Op.Code.un_void, Op.init(.{ "void", Level.prefix, true }));
table.set(Op.Code.un_typeof, Op.init(.{ "typeof", Level.prefix, true }));
table.set(Op.Code.un_delete, Op.init(.{ "delete", Level.prefix, true }));
// Prefix update
table.set(Op.Code.un_pre_dec, Op.init(.{ "--", Level.prefix, false }));
table.set(Op.Code.un_pre_inc, Op.init(.{ "++", Level.prefix, false }));
// Postfix update
table.set(Op.Code.un_post_dec, Op.init(.{ "--", Level.postfix, false }));
table.set(Op.Code.un_post_inc, Op.init(.{ "++", Level.postfix, false }));
// Left-associative
table.set(Op.Code.bin_add, Op.init(.{ "+", Level.add, false }));
table.set(Op.Code.bin_sub, Op.init(.{ "-", Level.add, false }));
table.set(Op.Code.bin_mul, Op.init(.{ "*", Level.multiply, false }));
table.set(Op.Code.bin_div, Op.init(.{ "/", Level.multiply, false }));
table.set(Op.Code.bin_rem, Op.init(.{ "%", Level.multiply, false }));
table.set(Op.Code.bin_pow, Op.init(.{ "**", Level.exponentiation, false }));
table.set(Op.Code.bin_lt, Op.init(.{ "<", Level.compare, false }));
table.set(Op.Code.bin_le, Op.init(.{ "<=", Level.compare, false }));
table.set(Op.Code.bin_gt, Op.init(.{ ">", Level.compare, false }));
table.set(Op.Code.bin_ge, Op.init(.{ ">=", Level.compare, false }));
table.set(Op.Code.bin_in, Op.init(.{ "in", Level.compare, true }));
table.set(Op.Code.bin_instanceof, Op.init(.{ "instanceof", Level.compare, true }));
table.set(Op.Code.bin_shl, Op.init(.{ "<<", Level.shift, false }));
table.set(Op.Code.bin_shr, Op.init(.{ ">>", Level.shift, false }));
table.set(Op.Code.bin_u_shr, Op.init(.{ ">>>", Level.shift, false }));
table.set(Op.Code.bin_loose_eq, Op.init(.{ "==", Level.equals, false }));
table.set(Op.Code.bin_loose_ne, Op.init(.{ "!=", Level.equals, false }));
table.set(Op.Code.bin_strict_eq, Op.init(.{ "===", Level.equals, false }));
table.set(Op.Code.bin_strict_ne, Op.init(.{ "!==", Level.equals, false }));
table.set(Op.Code.bin_nullish_coalescing, Op.init(.{ "??", Level.nullish_coalescing, false }));
table.set(Op.Code.bin_logical_or, Op.init(.{ "||", Level.logical_or, false }));
table.set(Op.Code.bin_logical_and, Op.init(.{ "&&", Level.logical_and, false }));
table.set(Op.Code.bin_bitwise_or, Op.init(.{ "|", Level.bitwise_or, false }));
table.set(Op.Code.bin_bitwise_and, Op.init(.{ "&", Level.bitwise_and, false }));
table.set(Op.Code.bin_bitwise_xor, Op.init(.{ "^", Level.bitwise_xor, false }));
// Non-associative
table.set(Op.Code.bin_comma, Op.init(.{ ",", Level.comma, false }));
// Right-associative
table.set(Op.Code.bin_assign, Op.init(.{ "=", Level.assign, false }));
table.set(Op.Code.bin_add_assign, Op.init(.{ "+=", Level.assign, false }));
table.set(Op.Code.bin_sub_assign, Op.init(.{ "-=", Level.assign, false }));
table.set(Op.Code.bin_mul_assign, Op.init(.{ "*=", Level.assign, false }));
table.set(Op.Code.bin_div_assign, Op.init(.{ "/=", Level.assign, false }));
table.set(Op.Code.bin_rem_assign, Op.init(.{ "%=", Level.assign, false }));
table.set(Op.Code.bin_pow_assign, Op.init(.{ "**=", Level.assign, false }));
table.set(Op.Code.bin_shl_assign, Op.init(.{ "<<=", Level.assign, false }));
table.set(Op.Code.bin_shr_assign, Op.init(.{ ">>=", Level.assign, false }));
table.set(Op.Code.bin_u_shr_assign, Op.init(.{ ">>>=", Level.assign, false }));
table.set(Op.Code.bin_bitwise_or_assign, Op.init(.{ "|=", Level.assign, false }));
table.set(Op.Code.bin_bitwise_and_assign, Op.init(.{ "&=", Level.assign, false }));
table.set(Op.Code.bin_bitwise_xor_assign, Op.init(.{ "^=", Level.assign, false }));
table.set(Op.Code.bin_nullish_coalescing_assign, Op.init(.{ "??=", Level.assign, false }));
table.set(Op.Code.bin_logical_or_assign, Op.init(.{ "||=", Level.assign, false }));
table.set(Op.Code.bin_logical_and_assign, Op.init(.{ "&&=", Level.assign, false }));
return table;
};
};
pub const ArrayBinding = struct {
binding: BindingNodeIndex,
default_value: ?ExprNodeIndex = null,
};
pub const Ast = struct {
approximate_line_count: i32 = 0,
has_lazy_export: bool = false,
// This is a list of CommonJS features. When a file uses CommonJS features,
// it's not a candidate for "flat bundling" and must be wrapped in its own
// closure.
has_top_level_return: bool = false,
uses_exports_ref: bool = false,
uses_module_ref: bool = false,
exports_kind: ExportsKind = ExportsKind.none,
// This is a list of ES6 features. They are ranges instead of booleans so
// that they can be used in log messages. Check to see if "Len > 0".
import_keyword: ?logger.Range = null, // Does not include TypeScript-specific syntax or "import()"
export_keyword: ?logger.Range = null, // Does not include TypeScript-specific syntax
top_level_await_keyword: ?logger.Range = null,
// These are stored at the AST level instead of on individual AST nodes so
// they can be manipulated efficiently without a full AST traversal
import_records: []ImportRecord = &([_]ImportRecord{}),
hashbang: ?string = null,
directive: ?string = null,
url_for_css: ?string = null,
parts: []Part,
symbols: []Symbol = &([_]Symbol{}),
module_scope: ?Scope = null,
// char_freq: *CharFreq,
exports_ref: ?Ref = null,
module_ref: ?Ref = null,
wrapper_ref: ?Ref = null,
// These are used when bundling. They are filled in during the parser pass
// since we already have to traverse the AST then anyway and the parser pass
// is conveniently fully parallelized.
named_imports: std.AutoHashMap(Ref, NamedImport) = undefined,
named_exports: std.StringHashMap(NamedExport) = undefined,
top_level_symbol_to_parts: std.AutoHashMap(Ref, std.ArrayList(u32)) = undefined,
export_star_import_records: []u32 = &([_]u32{}),
pub fn initTest(parts: []Part) Ast {
return Ast{
.parts = parts,
};
}
pub fn toJSON(self: *Ast, allocator: *std.mem.Allocator, stream: anytype) !void {
const opts = std.json.StringifyOptions{ .whitespace = std.json.StringifyOptions.Whitespace{
.separator = true,
} };
try std.json.stringify(self.parts, opts, stream);
}
};
pub const Span = struct {
text: string,
range: logger.Range,
};
pub const ExportsKind = enum {
// This file doesn't have any kind of export, so it's impossible to say what
// kind of file this is. An empty file is in this category, for example.
none,
// The exports are stored on "module" and/or "exports". Calling "require()"
// on this module returns "module.exports". All imports to this module are
// allowed but may return undefined.
cjs,
// All export names are known explicitly. Calling "require()" on this module
// generates an exports object (stored in "exports") with getters for the
// export names. Named imports to this module are only allowed if they are
// in the set of export names.
esm,
// Some export names are known explicitly, but others fall back to a dynamic
// run-time object. This is necessary when using the "export * from" syntax
// with either a CommonJS module or an external module (i.e. a module whose
// export names are not known at compile-time).
//
// Calling "require()" on this module generates an exports object (stored in
// "exports") with getters for the export names. All named imports to this
// module are allowed. Direct named imports reference the corresponding export
// directly. Other imports go through property accesses on "exports".
esm_with_dyn };
pub fn isDynamicExport(exp: ExportsKind) bool {
return kind == .cjs || kind == .esm_with_dyn;
}
pub const DeclaredSymbol = packed struct {
ref: Ref,
is_top_level: bool = false,
};
pub const Dependency = packed struct {
source_index: u32 = 0,
part_index: u32 = 0,
};
pub const ExprList = std.ArrayList(Expr);
pub const StmtList = std.ArrayList(Stmt);
pub const BindingList = std.ArrayList(Binding);
pub const AstData = struct {
expr_list: ExprList,
stmt_list: StmtList,
binding_list: BindingList,
pub fn init(allocator: *std.mem.Allocator) AstData {
return AstData{
.expr_list = ExprList.init(allocator),
.stmt_list = StmtList.init(allocator),
.binding_list = BindingList.init(allocator),
};
}
pub fn deinit(self: *AstData) void {
self.expr_list.deinit();
self.stmt_list.deinit();
self.binding_list.deinit();
}
pub fn expr(self: *AstData, index: ExprNodeIndex) Expr {
return self.expr_list.items[index];
}
pub fn stmt(self: *AstData, index: StmtNodeIndex) Stmt {
return self.stmt_list.items[index];
}
pub fn binding(self: *AstData, index: BindingNodeIndex) Binding {
return self.binding_list.items[index];
}
pub fn add_(self: *AstData, t: anytype) !void {
return switch (@TypeOf(t)) {
Stmt => {
try self.stmt_list.append(t);
},
Expr => {
try self.expr_list.append(t);
},
Binding => {
try self.binding_list.append(t);
},
else => {
@compileError("Invalid type passed to AstData.add. Expected Stmt, Expr, or Binding.");
},
};
}
pub fn add(self: *AstData, t: anytype) !NodeIndex {
return &t;
// return switch (@TypeOf(t)) {
// Stmt => {
// var len = self.stmt_list.items.len;
// try self.stmt_list.append(t);
// return @intCast(StmtNodeIndex, len);
// },
// Expr => {
// var len = self.expr_list.items.len;
// try self.expr_list.append(t);
// return @intCast(ExprNodeIndex, len);
// },
// Binding => {
// var len = self.binding_list.items.len;
// try self.binding_list.append(t);
// return @intCast(BindingNodeIndex, len);
// },
// else => {
// @compileError("Invalid type passed to AstData.add. Expected Stmt, Expr, or Binding.");
// },
// };
}
};
// Each file is made up of multiple parts, and each part consists of one or
// more top-level statements. Parts are used for tree shaking and code
// splitting analysis. Individual parts of a file can be discarded by tree
// shaking and can be assigned to separate chunks (i.e. output files) by code
// splitting.
pub const Part = struct {
stmts: []Stmt,
scopes: []*Scope = &([_]*Scope{}),
// Each is an index into the file-level import record list
import_record_indices: []u32 = &([_]u32{}),
// All symbols that are declared in this part. Note that a given symbol may
// have multiple declarations, and so may end up being declared in multiple
// parts (e.g. multiple "var" declarations with the same name). Also note
// that this list isn't deduplicated and may contain duplicates.
declared_symbols: []DeclaredSymbol = &([_]DeclaredSymbol{}),
// An estimate of the number of uses of all symbols used within this part.
symbol_uses: SymbolUseMap = undefined,
// The indices of the other parts in this file that are needed if this part
// is needed.
dependencies: []Dependency = &([_]Dependency{}),
// If true, this part can be removed if none of the declared symbols are
// used. If the file containing this part is imported, then all parts that
// don't have this flag enabled must be included.
can_be_removed_if_unused: bool = false,
// This is used for generated parts that we don't want to be present if they
// aren't needed. This enables tree shaking for these parts even if global
// tree shaking isn't enabled.
force_tree_shaking: bool = false,
// This is true if this file has been marked as live by the tree shaking
// algorithm.
is_live: bool = false,
pub const SymbolUseMap = std.AutoHashMap(Ref, Symbol.Use);
pub fn jsonStringify(self: *const Part, options: std.json.StringifyOptions, writer: anytype) !void {
return std.json.stringify(self.stmts, options, writer);
}
};
pub const Result = struct {
ast: Ast,
ok: bool = false,
};
pub const StmtOrExpr = union(enum) {
stmt: StmtNodeIndex,
expr: ExprNodeIndex,
};
pub const NamedImport = struct {
// Parts within this file that use this import
local_parts_with_uses: []u32 = &([_]u32{}),
alias: ?string,
alias_loc: ?logger.Loc,
namespace_ref: ?Ref,
import_record_index: u32,
// If true, the alias refers to the entire export namespace object of a
// module. This is no longer represented as an alias called "*" because of
// the upcoming "Arbitrary module namespace identifier names" feature:
// https://github.com/tc39/ecma262/pull/2154
alias_is_star: bool = false,
// It's useful to flag exported imports because if they are in a TypeScript
// file, we can't tell if they are a type or a value.
is_exported: bool = false,
};
pub const NamedExport = struct {
ref: Ref,
alias_loc: logger.Loc,
};
pub const StrictModeKind = packed enum(u7) {
sloppy_mode,
explicit_strict_mode,
implicit_strict_mode_import,
implicit_strict_mode_export,
implicit_strict_mode_top_level_await,
implicit_strict_mode_class,
};
pub const Scope = struct {
id: usize = 0,
kind: Kind = Kind.block,
parent: ?*Scope,
children: std.ArrayList(*Scope),
members: std.StringHashMap(Member),
generated: std.ArrayList(Ref),
// This is used to store the ref of the label symbol for ScopeLabel scopes.
label_ref: ?Ref = null,
label_stmt_is_loop: bool = false,
// If a scope contains a direct eval() expression, then none of the symbols
// inside that scope can be renamed. We conservatively assume that the
// evaluated code might reference anything that it has access to.
contains_direct_eval: bool = false,
// This is to help forbid "arguments" inside class body scopes
forbid_arguments: bool = false,
strict_mode: StrictModeKind = StrictModeKind.sloppy_mode,
pub const Member = struct { ref: Ref, loc: logger.Loc };
pub const Kind = enum(u8) {
block,
with,
label,
class_name,
class_body,
// The scopes below stop hoisted variables from extending into parent scopes
entry, // This is a module, TypeScript enum, or TypeScript namespace
function_args,
function_body,
};
pub fn recursiveSetStrictMode(s: *Scope, kind: StrictModeKind) void {
if (s.strict_mode == .sloppy_mode) {
s.strict_mode = kind;
for (s.children.items) |child| {
child.recursiveSetStrictMode(kind);
}
}
}
pub fn kindStopsHoisting(s: *Scope) bool {
return @enumToInt(s.kind) >= @enumToInt(Kind.entry);
}
pub fn initPtr(allocator: *std.mem.Allocator) !*Scope {
var scope = try allocator.create(Scope);
scope.* = Scope{
.members = @TypeOf(scope.members).init(allocator),
.children = @TypeOf(scope.children).init(allocator),
.generated = @TypeOf(scope.generated).init(allocator),
.parent = null,
};
return scope;
}
};
pub fn printmem(comptime format: string, args: anytype) void {
// Output.print(format, args);
}
test "Binding.init" {
var binding = Binding.alloc(
std.heap.page_allocator,
B.Identifier{ .ref = Ref{ .source_index = 0, .inner_index = 10 } },
logger.Loc{ .start = 1 },
);
std.testing.expect(binding.loc.start == 1);
std.testing.expect(@as(Binding.Tag, binding.data) == Binding.Tag.b_identifier);
printmem("-------Binding: {d} bits\n", .{@bitSizeOf(Binding)});
printmem("B.Identifier: {d} bits\n", .{@bitSizeOf(B.Identifier)});
printmem("B.Array: {d} bits\n", .{@bitSizeOf(B.Array)});
printmem("B.Property: {d} bits\n", .{@bitSizeOf(B.Property)});
printmem("B.Object: {d} bits\n", .{@bitSizeOf(B.Object)});
printmem("B.Missing: {d} bits\n", .{@bitSizeOf(B.Missing)});
printmem("-------Binding: {d} bits\n", .{@bitSizeOf(Binding)});
}
test "Stmt.init" {
var stmt = Stmt.alloc(
std.heap.page_allocator,
S.Continue{},
logger.Loc{ .start = 1 },
);
std.testing.expect(stmt.loc.start == 1);
std.testing.expect(@as(Stmt.Tag, stmt.data) == Stmt.Tag.s_continue);
printmem("-----Stmt {d} bits\n", .{@bitSizeOf(Stmt)});
printmem("StmtNodeList: {d} bits\n", .{@bitSizeOf(StmtNodeList)});
printmem("StmtOrExpr: {d} bits\n", .{@bitSizeOf(StmtOrExpr)});
printmem("S.Block {d} bits\n", .{@bitSizeOf(S.Block)});
printmem("S.Comment {d} bits\n", .{@bitSizeOf(S.Comment)});
printmem("S.Directive {d} bits\n", .{@bitSizeOf(S.Directive)});
printmem("S.ExportClause {d} bits\n", .{@bitSizeOf(S.ExportClause)});
printmem("S.Empty {d} bits\n", .{@bitSizeOf(S.Empty)});
printmem("S.TypeScript {d} bits\n", .{@bitSizeOf(S.TypeScript)});
printmem("S.Debugger {d} bits\n", .{@bitSizeOf(S.Debugger)});
printmem("S.ExportFrom {d} bits\n", .{@bitSizeOf(S.ExportFrom)});
printmem("S.ExportDefault {d} bits\n", .{@bitSizeOf(S.ExportDefault)});
printmem("S.Enum {d} bits\n", .{@bitSizeOf(S.Enum)});
printmem("S.Namespace {d} bits\n", .{@bitSizeOf(S.Namespace)});
printmem("S.Function {d} bits\n", .{@bitSizeOf(S.Function)});
printmem("S.Class {d} bits\n", .{@bitSizeOf(S.Class)});
printmem("S.If {d} bits\n", .{@bitSizeOf(S.If)});
printmem("S.For {d} bits\n", .{@bitSizeOf(S.For)});
printmem("S.ForIn {d} bits\n", .{@bitSizeOf(S.ForIn)});
printmem("S.ForOf {d} bits\n", .{@bitSizeOf(S.ForOf)});
printmem("S.DoWhile {d} bits\n", .{@bitSizeOf(S.DoWhile)});
printmem("S.While {d} bits\n", .{@bitSizeOf(S.While)});
printmem("S.With {d} bits\n", .{@bitSizeOf(S.With)});
printmem("S.Try {d} bits\n", .{@bitSizeOf(S.Try)});
printmem("S.Switch {d} bits\n", .{@bitSizeOf(S.Switch)});
printmem("S.Import {d} bits\n", .{@bitSizeOf(S.Import)});
printmem("S.Return {d} bits\n", .{@bitSizeOf(S.Return)});
printmem("S.Throw {d} bits\n", .{@bitSizeOf(S.Throw)});
printmem("S.Local {d} bits\n", .{@bitSizeOf(S.Local)});
printmem("S.Break {d} bits\n", .{@bitSizeOf(S.Break)});
printmem("S.Continue {d} bits\n", .{@bitSizeOf(S.Continue)});
printmem("-----Stmt {d} bits\n", .{@bitSizeOf(Stmt)});
}
test "Expr.init" {
var allocator = std.heap.page_allocator;
const ident = Expr.alloc(allocator, E.Identifier{}, logger.Loc{ .start = 100 });
var list = [_]Expr{ident};
var expr = Expr.alloc(
allocator,
E.Array{ .items = list[0..] },
logger.Loc{ .start = 1 },
);
std.testing.expect(expr.loc.start == 1);
std.testing.expect(@as(Expr.Tag, expr.data) == Expr.Tag.e_array);
std.testing.expect(expr.data.e_array.items[0].loc.start == 100);
printmem("--Ref {d} bits\n", .{@bitSizeOf(Ref)});
printmem("--LocRef {d} bits\n", .{@bitSizeOf(LocRef)});
printmem("--logger.Loc {d} bits\n", .{@bitSizeOf(logger.Loc)});
printmem("--logger.Range {d} bits\n", .{@bitSizeOf(logger.Range)});
printmem("----------Expr: {d} bits\n", .{@bitSizeOf(Expr)});
printmem("ExprNodeList: {d} bits\n", .{@bitSizeOf(ExprNodeList)});
printmem("E.Array: {d} bits\n", .{@bitSizeOf(E.Array)});
printmem("E.Unary: {d} bits\n", .{@bitSizeOf(E.Unary)});
printmem("E.Binary: {d} bits\n", .{@bitSizeOf(E.Binary)});
printmem("E.Boolean: {d} bits\n", .{@bitSizeOf(E.Boolean)});
printmem("E.Super: {d} bits\n", .{@bitSizeOf(E.Super)});
printmem("E.Null: {d} bits\n", .{@bitSizeOf(E.Null)});
printmem("E.Undefined: {d} bits\n", .{@bitSizeOf(E.Undefined)});
printmem("E.New: {d} bits\n", .{@bitSizeOf(E.New)});
printmem("E.NewTarget: {d} bits\n", .{@bitSizeOf(E.NewTarget)});
printmem("E.Function: {d} bits\n", .{@bitSizeOf(E.Function)});
printmem("E.ImportMeta: {d} bits\n", .{@bitSizeOf(E.ImportMeta)});
printmem("E.Call: {d} bits\n", .{@bitSizeOf(E.Call)});
printmem("E.Dot: {d} bits\n", .{@bitSizeOf(E.Dot)});
printmem("E.Index: {d} bits\n", .{@bitSizeOf(E.Index)});
printmem("E.Arrow: {d} bits\n", .{@bitSizeOf(E.Arrow)});
printmem("E.Identifier: {d} bits\n", .{@bitSizeOf(E.Identifier)});
printmem("E.ImportIdentifier: {d} bits\n", .{@bitSizeOf(E.ImportIdentifier)});
printmem("E.PrivateIdentifier: {d} bits\n", .{@bitSizeOf(E.PrivateIdentifier)});
printmem("E.JSXElement: {d} bits\n", .{@bitSizeOf(E.JSXElement)});
printmem("E.Missing: {d} bits\n", .{@bitSizeOf(E.Missing)});
printmem("E.Number: {d} bits\n", .{@bitSizeOf(E.Number)});
printmem("E.BigInt: {d} bits\n", .{@bitSizeOf(E.BigInt)});
printmem("E.Object: {d} bits\n", .{@bitSizeOf(E.Object)});
printmem("E.Spread: {d} bits\n", .{@bitSizeOf(E.Spread)});
printmem("E.String: {d} bits\n", .{@bitSizeOf(E.String)});
printmem("E.TemplatePart: {d} bits\n", .{@bitSizeOf(E.TemplatePart)});
printmem("E.Template: {d} bits\n", .{@bitSizeOf(E.Template)});
printmem("E.RegExp: {d} bits\n", .{@bitSizeOf(E.RegExp)});
printmem("E.Await: {d} bits\n", .{@bitSizeOf(E.Await)});
printmem("E.Yield: {d} bits\n", .{@bitSizeOf(E.Yield)});
printmem("E.If: {d} bits\n", .{@bitSizeOf(E.If)});
printmem("E.RequireOrRequireResolve: {d} bits\n", .{@bitSizeOf(E.RequireOrRequireResolve)});
printmem("E.Import: {d} bits\n", .{@bitSizeOf(E.Import)});
printmem("----------Expr: {d} bits\n", .{@bitSizeOf(Expr)});
}
// -- ESBuild bit sizes
// EArray | 256
// EArrow | 512
// EAwait | 192
// EBinary | 448
// ECall | 448
// EDot | 384
// EIdentifier | 96
// EIf | 576
// EImport | 448
// EImportIdentifier | 96
// EIndex | 448
// EJSXElement | 448
// ENew | 448
// EnumValue | 384
// EObject | 256
// EPrivateIdentifier | 64
// ERequire | 32
// ERequireResolve | 32
// EString | 256
// ETemplate | 640
// EUnary | 256
// Expr | 192
// ExprOrStmt | 128
// EYield | 128
// Finally | 256
// Fn | 704
// FnBody | 256
// LocRef | 96
// NamedExport | 96
// NamedImport | 512
// NameMinifier | 256
// NamespaceAlias | 192
// opTableEntry | 256
// Part | 1088
// Property | 640
// PropertyBinding | 512
// Ref | 64
// SBlock | 192
// SBreak | 64
// SClass | 704
// SComment | 128
// SContinue | 64
// Scope | 704
// ScopeMember | 96
// SDirective | 256
// SDoWhile | 384
// SEnum | 448
// SExportClause | 256
// SExportDefault | 256
// SExportEquals | 192
// SExportFrom | 320
// SExportStar | 192
// SExpr | 256
// SFor | 384
// SForIn | 576
// SForOf | 640
// SFunction | 768
// SIf | 448
// SImport | 320
// SLabel | 320
// SLazyExport | 192
// SLocal | 256
// SNamespace | 448
// Span | 192
// SReturn | 64
// SSwitch | 448
// SThrow | 192
// Stmt | 192
// STry | 384
// -- ESBuild bit sizes