Files
bun.sh/src/bun.js/webcore/encoding.zig
2025-01-26 22:35:45 -08:00

1495 lines
57 KiB
Zig

const std = @import("std");
const Api = @import("../../api/schema.zig").Api;
const MimeType = bun.http.MimeType;
const ZigURL = @import("../../url.zig").URL;
const HTTPClient = bun.http;
const JSC = bun.JSC;
const js = JSC.C;
const Method = @import("../../http/method.zig").Method;
const ObjectPool = @import("../../pool.zig").ObjectPool;
const bun = @import("root").bun;
const Output = bun.Output;
const MutableString = bun.MutableString;
const strings = bun.strings;
const string = bun.string;
const FeatureFlags = bun.FeatureFlags;
const ArrayBuffer = @import("../base.zig").ArrayBuffer;
const JSUint8Array = JSC.JSUint8Array;
const Properties = @import("../base.zig").Properties;
const castObj = @import("../base.zig").castObj;
const getAllocator = @import("../base.zig").getAllocator;
const Environment = @import("../../env.zig");
const ZigString = JSC.ZigString;
const JSInternalPromise = JSC.JSInternalPromise;
const JSPromise = JSC.JSPromise;
const JSValue = JSC.JSValue;
const JSGlobalObject = JSC.JSGlobalObject;
const VirtualMachine = JSC.VirtualMachine;
const Task = @import("../javascript.zig").Task;
const picohttp = bun.picohttp;
pub const TextEncoder = struct {
pub export fn TextEncoder__encode8(
globalThis: *JSGlobalObject,
ptr: [*]const u8,
len: usize,
) JSValue {
// as much as possible, rely on JSC to own the memory
// their code is more battle-tested than bun's code
// so we do a stack allocation here
// and then copy into JSC memory
// unless it's huge
// JSC will GC Uint8Array that occupy less than 512 bytes
// so it's extra good for that case
// this also means there won't be reallocations for small strings
var buf: [2048]u8 = undefined;
const slice = ptr[0..len];
if (slice.len <= buf.len / 2) {
const result = strings.copyLatin1IntoUTF8(&buf, []const u8, slice);
const uint8array = JSC.JSValue.createUninitializedUint8Array(globalThis, result.written);
bun.assert(result.written <= buf.len);
bun.assert(result.read == slice.len);
const array_buffer = uint8array.asArrayBuffer(globalThis).?;
bun.assert(result.written == array_buffer.len);
@memcpy(array_buffer.byteSlice()[0..result.written], buf[0..result.written]);
return uint8array;
} else {
const bytes = strings.allocateLatin1IntoUTF8(globalThis.bunVM().allocator, []const u8, slice) catch {
return JSC.toInvalidArguments("Out of memory", .{}, globalThis);
};
bun.assert(bytes.len >= slice.len);
return ArrayBuffer.fromBytes(bytes, .Uint8Array).toJSUnchecked(globalThis, null);
}
}
pub export fn TextEncoder__encode16(
globalThis: *JSGlobalObject,
ptr: [*]const u16,
len: usize,
) JSValue {
// as much as possible, rely on JSC to own the memory
// their code is more battle-tested than bun's code
// so we do a stack allocation here
// and then copy into JSC memory
// unless it's huge
// JSC will GC Uint8Array that occupy less than 512 bytes
// so it's extra good for that case
// this also means there won't be reallocations for small strings
var buf: [2048]u8 = undefined;
const slice = ptr[0..len];
// max utf16 -> utf8 length
if (slice.len <= buf.len / 4) {
const result = strings.copyUTF16IntoUTF8(&buf, @TypeOf(slice), slice, true);
if (result.read == 0 or result.written == 0) {
const uint8array = JSC.JSValue.createUninitializedUint8Array(globalThis, 3);
const array_buffer = uint8array.asArrayBuffer(globalThis).?;
const replacement_char = [_]u8{ 239, 191, 189 };
@memcpy(array_buffer.slice()[0..replacement_char.len], &replacement_char);
return uint8array;
}
const uint8array = JSC.JSValue.createUninitializedUint8Array(globalThis, result.written);
bun.assert(result.written <= buf.len);
bun.assert(result.read == slice.len);
const array_buffer = uint8array.asArrayBuffer(globalThis).?;
bun.assert(result.written == array_buffer.len);
@memcpy(array_buffer.slice()[0..result.written], buf[0..result.written]);
return uint8array;
} else {
const bytes = strings.toUTF8AllocWithType(
bun.default_allocator,
@TypeOf(slice),
slice,
) catch {
return JSC.toInvalidArguments("Out of memory", .{}, globalThis);
};
return ArrayBuffer.fromBytes(bytes, .Uint8Array).toJSUnchecked(globalThis, null);
}
}
// This is a fast path for copying a Rope string into a Uint8Array.
// This keeps us from an extra string temporary allocation
const RopeStringEncoder = struct {
globalThis: *JSGlobalObject,
buf: []u8,
tail: usize = 0,
any_non_ascii: bool = false,
pub fn append8(it: *JSC.JSString.Iterator, ptr: [*]const u8, len: u32) callconv(.C) void {
var this = bun.cast(*RopeStringEncoder, it.data.?);
const result = strings.copyLatin1IntoUTF8StopOnNonASCII(this.buf[this.tail..], []const u8, ptr[0..len], true);
if (result.read == std.math.maxInt(u32) and result.written == std.math.maxInt(u32)) {
it.stop = 1;
this.any_non_ascii = true;
} else {
this.tail += result.written;
}
}
pub fn append16(it: *JSC.JSString.Iterator, _: [*]const u16, _: u32) callconv(.C) void {
var this = bun.cast(*RopeStringEncoder, it.data.?);
this.any_non_ascii = true;
it.stop = 1;
}
pub fn write8(it: *JSC.JSString.Iterator, ptr: [*]const u8, len: u32, offset: u32) callconv(.C) void {
var this = bun.cast(*RopeStringEncoder, it.data.?);
const result = strings.copyLatin1IntoUTF8StopOnNonASCII(this.buf[offset..], []const u8, ptr[0..len], true);
if (result.read == std.math.maxInt(u32) and result.written == std.math.maxInt(u32)) {
it.stop = 1;
this.any_non_ascii = true;
}
}
pub fn write16(it: *JSC.JSString.Iterator, _: [*]const u16, _: u32, _: u32) callconv(.C) void {
var this = bun.cast(*RopeStringEncoder, it.data.?);
this.any_non_ascii = true;
it.stop = 1;
}
pub fn iter(this: *RopeStringEncoder) JSC.JSString.Iterator {
return .{
.data = this,
.stop = 0,
.append8 = append8,
.append16 = append16,
.write8 = write8,
.write16 = write16,
};
}
};
// This fast path is only suitable for ASCII strings
// It's not suitable for UTF-16 strings, because getting the byteLength is unpredictable
// It also isn't usable for latin1 strings which contain non-ascii characters
pub export fn TextEncoder__encodeRopeString(
globalThis: *JSGlobalObject,
rope_str: *JSC.JSString,
) JSValue {
if (comptime Environment.allow_assert) bun.assert(rope_str.is8Bit());
var stack_buf: [2048]u8 = undefined;
var buf_to_use: []u8 = &stack_buf;
const length = rope_str.length();
var array: JSValue = .zero;
if (length > stack_buf.len / 2) {
array = JSC.JSValue.createUninitializedUint8Array(globalThis, length);
array.ensureStillAlive();
buf_to_use = array.asArrayBuffer(globalThis).?.slice();
}
var encoder = RopeStringEncoder{
.globalThis = globalThis,
.buf = buf_to_use,
};
var iter = encoder.iter();
array.ensureStillAlive();
rope_str.iterator(globalThis, &iter);
array.ensureStillAlive();
if (encoder.any_non_ascii) {
return .undefined;
}
if (array == .zero) {
array = JSC.JSValue.createUninitializedUint8Array(globalThis, length);
array.ensureStillAlive();
@memcpy(array.asArrayBuffer(globalThis).?.ptr[0..length], buf_to_use[0..length]);
}
return array;
}
pub export fn TextEncoder__encodeInto16(
input_ptr: [*]const u16,
input_len: usize,
buf_ptr: [*]u8,
buf_len: usize,
) u64 {
const output = buf_ptr[0..buf_len];
const input = input_ptr[0..input_len];
var result: strings.EncodeIntoResult = strings.copyUTF16IntoUTF8(output, []const u16, input, false);
if (output.len >= 3 and (result.read == 0 or result.written == 0)) {
const replacement_char = [_]u8{ 239, 191, 189 };
@memcpy(buf_ptr[0..replacement_char.len], &replacement_char);
result.read = 1;
result.written = 3;
}
const sized: [2]u32 = .{ result.read, result.written };
return @bitCast(sized);
}
pub export fn TextEncoder__encodeInto8(
input_ptr: [*]const u8,
input_len: usize,
buf_ptr: [*]u8,
buf_len: usize,
) u64 {
const output = buf_ptr[0..buf_len];
const input = input_ptr[0..input_len];
const result: strings.EncodeIntoResult =
strings.copyLatin1IntoUTF8(output, []const u8, input);
const sized: [2]u32 = .{ result.read, result.written };
return @bitCast(sized);
}
};
comptime {
if (!JSC.is_bindgen) {
_ = TextEncoder.TextEncoder__encode8;
_ = TextEncoder.TextEncoder__encode16;
_ = TextEncoder.TextEncoder__encodeInto8;
_ = TextEncoder.TextEncoder__encodeInto16;
_ = TextEncoder.TextEncoder__encodeRopeString;
}
}
/// https://encoding.spec.whatwg.org/encodings.json
pub const EncodingLabel = enum {
@"UTF-8",
IBM866,
@"ISO-8859-2",
@"ISO-8859-3",
@"ISO-8859-4",
@"ISO-8859-5",
@"ISO-8859-6",
@"ISO-8859-7",
@"ISO-8859-8",
@"ISO-8859-8-I",
@"ISO-8859-10",
@"ISO-8859-13",
@"ISO-8859-14",
@"ISO-8859-15",
@"ISO-8859-16",
@"KOI8-R",
@"KOI8-U",
macintosh,
@"windows-874",
@"windows-1250",
@"windows-1251",
/// Also known as
/// - ASCII
/// - latin1
@"windows-1252",
@"windows-1253",
@"windows-1254",
@"windows-1255",
@"windows-1256",
@"windows-1257",
@"windows-1258",
@"x-mac-cyrillic",
Big5,
@"EUC-JP",
@"ISO-2022-JP",
Shift_JIS,
@"EUC-KR",
@"UTF-16BE",
@"UTF-16LE",
@"x-user-defined",
pub const Map = std.enums.EnumMap(EncodingLabel, string);
pub const label: Map = brk: {
var map = Map.initFull("");
map.put(EncodingLabel.@"UTF-8", "utf-8");
map.put(EncodingLabel.@"UTF-16LE", "utf-16le");
map.put(EncodingLabel.@"windows-1252", "windows-1252");
break :brk map;
};
const utf16_names = [_]string{
"ucs-2",
"utf-16",
"unicode",
"utf-16le",
"csunicode",
"unicodefeff",
"iso-10646-ucs-2",
};
const utf8_names = [_]string{
"utf8",
"utf-8",
"unicode11utf8",
"unicode20utf8",
"x-unicode20utf8",
"unicode-1-1-utf-8",
};
const latin1_names = [_]string{
"l1",
"ascii",
"cp819",
"cp1252",
"ibm819",
"latin1",
"iso88591",
"us-ascii",
"x-cp1252",
"iso8859-1",
"iso_8859-1",
"iso-8859-1",
"iso-ir-100",
"csisolatin1",
"windows-1252",
"ansi_x3.4-1968",
"iso_8859-1:1987",
};
pub const latin1 = EncodingLabel.@"windows-1252";
pub fn which(input_: string) ?EncodingLabel {
const input = strings.trim(input_, " \t\r\n");
const ExactMatcher = strings.ExactSizeMatcher;
const Eight = ExactMatcher(8);
const Sixteen = ExactMatcher(16);
return switch (input.len) {
1, 0 => null,
2...8 => switch (Eight.matchLower(input)) {
Eight.case("l1"),
Eight.case("ascii"),
Eight.case("cp819"),
Eight.case("cp1252"),
Eight.case("ibm819"),
Eight.case("latin1"),
Eight.case("iso88591"),
Eight.case("us-ascii"),
Eight.case("x-cp1252"),
=> EncodingLabel.latin1,
Eight.case("ucs-2"),
Eight.case("utf-16"),
Eight.case("unicode"),
Eight.case("utf-16le"),
=> EncodingLabel.@"UTF-16LE",
Eight.case("utf-16be"),
=> EncodingLabel.@"UTF-16BE",
Eight.case("utf8"), Eight.case("utf-8") => EncodingLabel.@"UTF-8",
else => null,
},
9...16 => switch (Sixteen.matchLower(input)) {
Sixteen.case("iso8859-1"),
Sixteen.case("iso_8859-1"),
Sixteen.case("iso-8859-1"),
Sixteen.case("iso-ir-100"),
Sixteen.case("csisolatin1"),
Sixteen.case("windows-1252"),
Sixteen.case("ansi_x3.4-1968"),
Sixteen.case("iso_8859-1:1987"),
=> EncodingLabel.latin1,
Sixteen.case("unicode11utf8"),
Sixteen.case("unicode20utf8"),
Sixteen.case("x-unicode20utf8"),
=> EncodingLabel.@"UTF-8",
Sixteen.case("csunicode"),
Sixteen.case("unicodefeff"),
Sixteen.case("iso-10646-ucs-2"),
=> EncodingLabel.@"UTF-16LE",
else => null,
},
else => if (strings.eqlCaseInsensitiveASCII(input, "unicode-1-1-utf-8", true))
EncodingLabel.@"UTF-8"
else
null,
};
}
};
pub const TextEncoderStreamEncoder = struct {
pending_lead_surrogate: ?u16 = null,
const log = Output.scoped(.TextEncoderStreamEncoder, false);
pub usingnamespace JSC.Codegen.JSTextEncoderStreamEncoder;
pub usingnamespace bun.New(TextEncoderStreamEncoder);
pub fn finalize(this: *TextEncoderStreamEncoder) void {
this.destroy();
}
pub fn constructor(_: *JSGlobalObject, _: *JSC.CallFrame) bun.JSError!*TextEncoderStreamEncoder {
return TextEncoderStreamEncoder.new(.{});
}
pub fn encode(this: *TextEncoderStreamEncoder, globalObject: *JSC.JSGlobalObject, callFrame: *JSC.CallFrame) bun.JSError!JSValue {
const arguments = callFrame.arguments_old(1).slice();
if (arguments.len == 0) {
return globalObject.throwNotEnoughArguments("TextEncoderStreamEncoder.encode", 1, arguments.len);
}
const str: ZigString = (arguments[0].toStringOrNull(globalObject) orelse return .zero).getZigString(globalObject);
if (str.is16Bit()) {
return this.encodeUTF16(globalObject, str.utf16SliceAligned());
}
return this.encodeLatin1(globalObject, str.slice());
}
pub fn encodeWithoutTypeChecks(this: *TextEncoderStreamEncoder, globalObject: *JSC.JSGlobalObject, input: *JSC.JSString) JSValue {
const str = input.getZigString(globalObject);
if (str.is16Bit()) {
return this.encodeUTF16(globalObject, str.utf16SliceAligned());
}
return this.encodeLatin1(globalObject, str.slice());
}
fn encodeLatin1(this: *TextEncoderStreamEncoder, globalObject: *JSGlobalObject, input: []const u8) JSValue {
log("encodeLatin1: \"{s}\"", .{input});
if (input.len == 0) return JSUint8Array.createEmpty(globalObject);
const prepend_replacement_len: usize = prepend_replacement: {
if (this.pending_lead_surrogate != null) {
this.pending_lead_surrogate = null;
// no latin1 surrogate pairs
break :prepend_replacement 3;
}
break :prepend_replacement 0;
};
// In a previous benchmark, counting the length took about as much time as allocating the buffer.
//
// Benchmark Time % CPU (ns) Iterations Ratio
// 288.00 ms 13.5% 288.00 ms simdutf::arm64::implementation::convert_latin1_to_utf8(char const*, unsigned long, char*) const
// 278.00 ms 13.0% 278.00 ms simdutf::arm64::implementation::utf8_length_from_latin1(char const*, unsigned long) const
//
//
var buffer = std.ArrayList(u8).initCapacity(bun.default_allocator, input.len + prepend_replacement_len) catch {
return globalObject.throwOutOfMemoryValue();
};
if (prepend_replacement_len > 0) {
buffer.appendSliceAssumeCapacity(&[3]u8{ 0xef, 0xbf, 0xbd });
}
var remain = input;
while (remain.len > 0) {
const result = strings.copyLatin1IntoUTF8(buffer.unusedCapacitySlice(), []const u8, remain);
buffer.items.len += result.written;
remain = remain[result.read..];
if (result.written == 0 and result.read == 0) {
buffer.ensureUnusedCapacity(2) catch {
buffer.deinit();
return globalObject.throwOutOfMemoryValue();
};
} else if (buffer.items.len == buffer.capacity and remain.len > 0) {
buffer.ensureTotalCapacity(buffer.items.len + remain.len + 1) catch {
buffer.deinit();
return globalObject.throwOutOfMemoryValue();
};
}
}
if (comptime Environment.isDebug) {
// wrap in comptime if so simdutf isn't called in a release build here.
bun.debugAssert(buffer.items.len == (bun.simdutf.length.utf8.from.latin1(input) + prepend_replacement_len));
}
return JSC.JSUint8Array.fromBytes(globalObject, buffer.items);
}
fn encodeUTF16(this: *TextEncoderStreamEncoder, globalObject: *JSGlobalObject, input: []const u16) JSValue {
log("encodeUTF16: \"{}\"", .{bun.fmt.utf16(input)});
if (input.len == 0) return JSUint8Array.createEmpty(globalObject);
const Prepend = struct {
bytes: [4]u8,
len: u3,
pub const replacement: @This() = .{ .bytes = .{ 0xef, 0xbf, 0xbd, 0 }, .len = 3 };
pub fn fromSequence(seq: [4]u8, length: u3) @This() {
return .{ .bytes = seq, .len = length };
}
};
var remain = input;
const prepend: ?Prepend = prepend: {
if (this.pending_lead_surrogate) |lead| {
this.pending_lead_surrogate = null;
const maybe_trail = remain[0];
if (strings.u16IsTrail(maybe_trail)) {
const converted = strings.utf16CodepointWithFFFD([]const u16, &.{ lead, maybe_trail });
// shouldn't fail because `u16IsTrail` is true and `pending_lead_surrogate` is always
// a valid lead.
bun.debugAssert(!converted.fail);
const sequence = strings.wtf8Sequence(converted.code_point);
remain = remain[1..];
if (remain.len == 0) {
return JSUint8Array.fromBytesCopy(
globalObject,
sequence[0..converted.utf8Width()],
);
}
break :prepend Prepend.fromSequence(sequence, converted.utf8Width());
}
break :prepend Prepend.replacement;
}
break :prepend null;
};
const length = bun.simdutf.length.utf8.from.utf16.le(remain);
var buf = std.ArrayList(u8).initCapacity(
bun.default_allocator,
length + @as(usize, if (prepend) |pre| pre.len else 0),
) catch {
return globalObject.throwOutOfMemoryValue();
};
if (prepend) |*pre| {
buf.appendSliceAssumeCapacity(pre.bytes[0..pre.len]);
}
const result = bun.simdutf.convert.utf16.to.utf8.with_errors.le(remain, buf.unusedCapacitySlice());
switch (result.status) {
else => {
// Slow path: there was invalid UTF-16, so we need to convert it without simdutf.
const lead_surrogate = strings.toUTF8ListWithTypeBun(&buf, []const u16, remain, true) catch {
buf.deinit();
return globalObject.throwOutOfMemoryValue();
};
if (lead_surrogate) |pending_lead| {
this.pending_lead_surrogate = pending_lead;
if (buf.items.len == 0) return JSUint8Array.createEmpty(globalObject);
}
return JSC.JSUint8Array.fromBytes(globalObject, buf.items);
},
.success => {
buf.items.len += result.count;
return JSC.JSUint8Array.fromBytes(globalObject, buf.items);
},
}
}
pub fn flush(this: *TextEncoderStreamEncoder, globalObject: *JSGlobalObject, _: *JSC.CallFrame) bun.JSError!JSValue {
return flushBody(this, globalObject);
}
pub fn flushWithoutTypeChecks(this: *TextEncoderStreamEncoder, globalObject: *JSGlobalObject) JSValue {
return flushBody(this, globalObject);
}
fn flushBody(this: *TextEncoderStreamEncoder, globalObject: *JSGlobalObject) JSValue {
return if (this.pending_lead_surrogate == null)
JSUint8Array.createEmpty(globalObject)
else
JSUint8Array.fromBytesCopy(globalObject, &.{ 0xef, 0xbf, 0xbd });
}
};
pub const TextDecoder = struct {
// used for utf8 decoding
buffered: struct {
buf: [3]u8 = .{0} ** 3,
len: u2 = 0,
pub fn slice(this: *@This()) []const u8 {
return this.buf[0..this.len];
}
} = .{},
// used for utf16 decoding
lead_byte: ?u8 = null,
lead_surrogate: ?u16 = null,
ignore_bom: bool = false,
fatal: bool = false,
encoding: EncodingLabel = EncodingLabel.@"UTF-8",
pub usingnamespace bun.New(TextDecoder);
pub fn finalize(this: *TextDecoder) void {
this.destroy();
}
pub usingnamespace JSC.Codegen.JSTextDecoder;
pub fn getIgnoreBOM(
this: *TextDecoder,
_: *JSC.JSGlobalObject,
) JSC.JSValue {
return JSC.JSValue.jsBoolean(this.ignore_bom);
}
pub fn getFatal(
this: *TextDecoder,
_: *JSC.JSGlobalObject,
) JSC.JSValue {
return JSC.JSValue.jsBoolean(this.fatal);
}
pub fn getEncoding(
this: *TextDecoder,
globalThis: *JSC.JSGlobalObject,
) JSC.JSValue {
return ZigString.init(EncodingLabel.label.get(this.encoding).?).toJS(globalThis);
}
const Vector16 = std.meta.Vector(16, u16);
const max_16_ascii: Vector16 = @splat(@as(u16, 127));
fn processCodeUnitUTF16(
this: *TextDecoder,
output: *std.ArrayListUnmanaged(u16),
saw_error: *bool,
code_unit: u16,
) error{OutOfMemory}!void {
if (this.lead_surrogate) |lead_surrogate| {
this.lead_surrogate = null;
if (strings.u16IsTrail(code_unit)) {
// TODO: why is this here?
// const code_point = strings.u16GetSupplementary(lead_surrogate, code_unit);
try output.appendSlice(
bun.default_allocator,
&.{ lead_surrogate, code_unit },
);
return;
}
try output.append(bun.default_allocator, strings.unicode_replacement);
saw_error.* = true;
}
if (strings.u16IsLead(code_unit)) {
this.lead_surrogate = code_unit;
return;
}
if (strings.u16IsTrail(code_unit)) {
try output.append(bun.default_allocator, strings.unicode_replacement);
saw_error.* = true;
return;
}
try output.append(bun.default_allocator, code_unit);
return;
}
pub fn codeUnitFromBytesUTF16(
first: u16,
second: u16,
comptime big_endian: bool,
) u16 {
return if (comptime big_endian)
(first << 8) | second
else
first | (second << 8);
}
pub fn decodeUTF16(
this: *TextDecoder,
bytes: []const u8,
comptime big_endian: bool,
comptime flush: bool,
) error{OutOfMemory}!struct { std.ArrayListUnmanaged(u16), bool } {
var output: std.ArrayListUnmanaged(u16) = .{};
try output.ensureTotalCapacity(bun.default_allocator, @divFloor(bytes.len, 2));
var remain = bytes;
var saw_error = false;
if (this.lead_byte) |lead_byte| {
if (remain.len > 0) {
this.lead_byte = null;
try this.processCodeUnitUTF16(
&output,
&saw_error,
codeUnitFromBytesUTF16(@intCast(lead_byte), @intCast(remain[0]), big_endian),
);
remain = remain[1..];
}
}
var i: usize = 0;
while (i < remain.len -| 1) {
try this.processCodeUnitUTF16(
&output,
&saw_error,
codeUnitFromBytesUTF16(@intCast(remain[i]), @intCast(remain[i + 1]), big_endian),
);
i += 2;
}
if (remain.len != 0 and i == remain.len - 1) {
this.lead_byte = remain[i];
} else {
bun.assertWithLocation(i == remain.len, @src());
}
if (comptime flush) {
if (this.lead_byte != null or this.lead_surrogate != null) {
this.lead_byte = null;
this.lead_surrogate = null;
try output.append(bun.default_allocator, strings.unicode_replacement);
saw_error = true;
return .{ output, saw_error };
}
}
return .{ output, saw_error };
}
pub fn decode(this: *TextDecoder, globalThis: *JSC.JSGlobalObject, callframe: *JSC.CallFrame) bun.JSError!JSValue {
const arguments = callframe.arguments_old(2).slice();
const input_slice = input_slice: {
if (arguments.len == 0 or arguments[0].isUndefined()) {
break :input_slice "";
}
if (arguments[0].asArrayBuffer(globalThis)) |array_buffer| {
break :input_slice array_buffer.slice();
}
return globalThis.throwInvalidArguments("TextDecoder.decode expects an ArrayBuffer or TypedArray", .{});
};
const stream = stream: {
if (arguments.len > 1 and arguments[1].isObject()) {
if (arguments[1].fastGet(globalThis, .stream)) |stream_value| {
const stream_bool = stream_value.coerce(bool, globalThis);
if (globalThis.hasException()) {
return .zero;
}
break :stream stream_bool;
}
}
break :stream false;
};
return switch (!stream) {
inline else => |flush| this.decodeSlice(globalThis, input_slice, flush),
};
}
pub fn decodeWithoutTypeChecks(this: *TextDecoder, globalThis: *JSC.JSGlobalObject, uint8array: *JSC.JSUint8Array) bun.JSError!JSValue {
return this.decodeSlice(globalThis, uint8array.slice(), false);
}
fn decodeSlice(this: *TextDecoder, globalThis: *JSC.JSGlobalObject, buffer_slice: []const u8, comptime flush: bool) bun.JSError!JSValue {
switch (this.encoding) {
EncodingLabel.latin1 => {
if (strings.isAllASCII(buffer_slice)) {
return ZigString.init(buffer_slice).toJS(globalThis);
}
// It's unintuitive that we encode Latin1 as UTF16 even though the engine natively supports Latin1 strings...
// However, this is also what WebKit seems to do.
//
// It's not clear why we couldn't jusst use Latin1 here, but tests failures proved it necessary.
const out_length = strings.elementLengthLatin1IntoUTF16([]const u8, buffer_slice);
const bytes = try globalThis.allocator().alloc(u16, out_length);
const out = strings.copyLatin1IntoUTF16([]u16, bytes, []const u8, buffer_slice);
return ZigString.toExternalU16(bytes.ptr, out.written, globalThis);
},
EncodingLabel.@"UTF-8" => {
const input, const deinit = input: {
const maybe_without_bom = if (!this.ignore_bom and strings.hasPrefixComptime(buffer_slice, "\xef\xbb\xbf"))
buffer_slice[3..]
else
buffer_slice;
if (this.buffered.len > 0) {
defer this.buffered.len = 0;
const joined = try bun.default_allocator.alloc(u8, maybe_without_bom.len + this.buffered.len);
@memcpy(joined[0..this.buffered.len], this.buffered.slice());
@memcpy(joined[this.buffered.len..][0..maybe_without_bom.len], maybe_without_bom);
break :input .{ joined, true };
}
break :input .{ maybe_without_bom, false };
};
const maybe_decode_result = switch (this.fatal) {
inline else => |fail_if_invalid| strings.toUTF16AllocMaybeBuffered(bun.default_allocator, input, fail_if_invalid, flush) catch |err| {
if (deinit) bun.default_allocator.free(input);
if (comptime fail_if_invalid) {
if (err == error.InvalidByteSequence) {
return globalThis.ERR_ENCODING_INVALID_ENCODED_DATA("Invalid byte sequence", .{}).throw();
}
}
bun.assert(err == error.OutOfMemory);
return globalThis.throwOutOfMemory();
},
};
if (maybe_decode_result) |decode_result| {
if (deinit) bun.default_allocator.free(input);
const decoded, const leftover, const leftover_len = decode_result;
bun.assert(this.buffered.len == 0);
if (comptime !flush) {
if (leftover_len != 0) {
this.buffered.buf = leftover;
this.buffered.len = leftover_len;
}
}
return ZigString.toExternalU16(decoded.ptr, decoded.len, globalThis);
}
bun.debugAssert(input.len == 0 or !deinit);
// Experiment: using mimalloc directly is slightly slower
return ZigString.init(input).toJS(globalThis);
},
inline .@"UTF-16LE", .@"UTF-16BE" => |utf16_encoding| {
const bom = if (comptime utf16_encoding == .@"UTF-16LE") "\xff\xfe" else "\xfe\xff";
const input = if (!this.ignore_bom and strings.hasPrefixComptime(buffer_slice, bom))
buffer_slice[2..]
else
buffer_slice;
var decoded, const saw_error = try this.decodeUTF16(input, utf16_encoding == .@"UTF-16BE", flush);
if (saw_error and this.fatal) {
decoded.deinit(bun.default_allocator);
return globalThis.ERR_ENCODING_INVALID_ENCODED_DATA("The encoded data was not valid {s} data", .{@tagName(utf16_encoding)}).throw();
}
var output = bun.String.fromUTF16(decoded.items);
return output.toJS(globalThis);
},
else => {
return globalThis.throwInvalidArguments("TextDecoder.decode set to unsupported encoding", .{});
},
}
}
pub fn constructor(globalThis: *JSC.JSGlobalObject, callframe: *JSC.CallFrame) bun.JSError!*TextDecoder {
var args_ = callframe.arguments_old(2);
var arguments: []const JSC.JSValue = args_.ptr[0..args_.len];
var decoder = TextDecoder{};
if (arguments.len > 0) {
// encoding
if (arguments[0].isString()) {
var str = try arguments[0].toSlice(globalThis, bun.default_allocator);
defer if (str.isAllocated()) str.deinit();
if (EncodingLabel.which(str.slice())) |label| {
decoder.encoding = label;
} else {
return globalThis.throwInvalidArguments("Unsupported encoding label \"{s}\"", .{str.slice()});
}
} else if (arguments[0].isUndefined()) {
// default to utf-8
decoder.encoding = EncodingLabel.@"UTF-8";
} else {
return globalThis.throwInvalidArguments("TextDecoder(encoding) label is invalid", .{});
}
if (arguments.len >= 2) {
const options = arguments[1];
if (!options.isObject()) {
return globalThis.throwInvalidArguments("TextDecoder(options) is invalid", .{});
}
if (try options.get(globalThis, "fatal")) |fatal| {
if (fatal.isBoolean()) {
decoder.fatal = fatal.asBoolean();
} else {
return globalThis.throwInvalidArguments("TextDecoder(options) fatal is invalid. Expected boolean value", .{});
}
}
if (try options.get(globalThis, "ignoreBOM")) |ignoreBOM| {
if (ignoreBOM.isBoolean()) {
decoder.ignore_bom = ignoreBOM.asBoolean();
} else {
return globalThis.throwInvalidArguments("TextDecoder(options) ignoreBOM is invalid. Expected boolean value", .{});
}
}
}
}
return TextDecoder.new(decoder);
}
};
pub const Encoder = struct {
export fn Bun__encoding__writeLatin1(input: [*]const u8, len: usize, to: [*]u8, to_len: usize, encoding: u8) usize {
return switch (@as(JSC.Node.Encoding, @enumFromInt(encoding))) {
.utf8 => writeU8(input, len, to, to_len, .utf8),
.latin1 => writeU8(input, len, to, to_len, .latin1),
.ascii => writeU8(input, len, to, to_len, .ascii),
.ucs2 => writeU8(input, len, to, to_len, .utf16le),
.utf16le => writeU8(input, len, to, to_len, .utf16le),
.base64 => writeU8(input, len, to, to_len, .base64),
.base64url => writeU8(input, len, to, to_len, .base64url),
.hex => writeU8(input, len, to, to_len, .hex),
else => unreachable,
} catch 0;
}
export fn Bun__encoding__writeUTF16(input: [*]const u16, len: usize, to: [*]u8, to_len: usize, encoding: u8) usize {
return switch (@as(JSC.Node.Encoding, @enumFromInt(encoding))) {
.utf8 => writeU16(input, len, to, to_len, .utf8, false),
.latin1 => writeU16(input, len, to, to_len, .ascii, false),
.ascii => writeU16(input, len, to, to_len, .ascii, false),
.ucs2 => writeU16(input, len, to, to_len, .utf16le, false),
.utf16le => writeU16(input, len, to, to_len, .utf16le, false),
.base64 => writeU16(input, len, to, to_len, .base64, false),
.base64url => writeU16(input, len, to, to_len, .base64url, false),
.hex => writeU16(input, len, to, to_len, .hex, false),
else => unreachable,
} catch 0;
}
export fn Bun__encoding__byteLengthLatin1(input: [*]const u8, len: usize, encoding: u8) usize {
return switch (@as(JSC.Node.Encoding, @enumFromInt(encoding))) {
.utf8 => byteLengthU8(input, len, .utf8),
.latin1 => byteLengthU8(input, len, .ascii),
.ascii => byteLengthU8(input, len, .ascii),
.ucs2 => byteLengthU8(input, len, .utf16le),
.utf16le => byteLengthU8(input, len, .utf16le),
.base64 => byteLengthU8(input, len, .base64),
.base64url => byteLengthU8(input, len, .base64url),
.hex => byteLengthU8(input, len, .hex),
else => unreachable,
};
}
export fn Bun__encoding__byteLengthUTF16(input: [*]const u16, len: usize, encoding: u8) usize {
return switch (@as(JSC.Node.Encoding, @enumFromInt(encoding))) {
.utf8 => byteLengthU16(input, len, .utf8),
.latin1 => byteLengthU16(input, len, .ascii),
.ascii => byteLengthU16(input, len, .ascii),
.ucs2 => byteLengthU16(input, len, .utf16le),
.utf16le => byteLengthU16(input, len, .utf16le),
.base64 => byteLengthU16(input, len, .base64),
.base64url => byteLengthU16(input, len, .base64url),
.hex => byteLengthU16(input, len, .hex),
else => unreachable,
};
}
export fn Bun__encoding__constructFromLatin1(globalObject: *JSGlobalObject, input: [*]const u8, len: usize, encoding: u8) JSValue {
const slice = switch (@as(JSC.Node.Encoding, @enumFromInt(encoding))) {
.hex => constructFromU8(input, len, bun.default_allocator, .hex),
.ascii => constructFromU8(input, len, bun.default_allocator, .ascii),
.base64url => constructFromU8(input, len, bun.default_allocator, .base64url),
.utf16le => constructFromU8(input, len, bun.default_allocator, .utf16le),
.ucs2 => constructFromU8(input, len, bun.default_allocator, .utf16le),
.utf8 => constructFromU8(input, len, bun.default_allocator, .utf8),
.base64 => constructFromU8(input, len, bun.default_allocator, .base64),
else => unreachable,
};
return JSC.JSValue.createBuffer(globalObject, slice, globalObject.bunVM().allocator);
}
export fn Bun__encoding__constructFromUTF16(globalObject: *JSGlobalObject, input: [*]const u16, len: usize, encoding: u8) JSValue {
const slice = switch (@as(JSC.Node.Encoding, @enumFromInt(encoding))) {
.base64 => constructFromU16(input, len, bun.default_allocator, .base64),
.hex => constructFromU16(input, len, bun.default_allocator, .hex),
.base64url => constructFromU16(input, len, bun.default_allocator, .base64url),
.utf16le => constructFromU16(input, len, bun.default_allocator, .utf16le),
.ucs2 => constructFromU16(input, len, bun.default_allocator, .utf16le),
.utf8 => constructFromU16(input, len, bun.default_allocator, .utf8),
.ascii => constructFromU16(input, len, bun.default_allocator, .ascii),
.latin1 => constructFromU16(input, len, bun.default_allocator, .latin1),
else => unreachable,
};
return JSC.JSValue.createBuffer(globalObject, slice, globalObject.bunVM().allocator);
}
// for SQL statement
export fn Bun__encoding__toStringUTF8(input: [*]const u8, len: usize, globalObject: *JSC.JSGlobalObject) JSValue {
return toStringComptime(input[0..len], globalObject, .utf8);
}
export fn Bun__encoding__toString(input: [*]const u8, len: usize, globalObject: *JSC.JSGlobalObject, encoding: u8) JSValue {
return toString(input[0..len], globalObject, @enumFromInt(encoding));
}
// pub fn writeUTF16AsUTF8(utf16: [*]const u16, len: usize, to: [*]u8, to_len: usize) callconv(.C) i32 {
// return @intCast(i32, strings.copyUTF16IntoUTF8(to[0..to_len], []const u16, utf16[0..len], true).written);
// }
pub fn toString(input: []const u8, globalObject: *JSGlobalObject, encoding: JSC.Node.Encoding) JSValue {
return switch (encoding) {
// treat buffer as utf8
// callers are expected to check that before constructing `Buffer` objects
.buffer, .utf8 => toStringComptime(input, globalObject, .utf8),
inline else => |enc| toStringComptime(input, globalObject, enc),
};
}
pub fn toBunStringFromOwnedSlice(input: []u8, encoding: JSC.Node.Encoding) bun.String {
if (input.len == 0)
return bun.String.empty;
switch (encoding) {
.ascii => {
if (strings.isAllASCII(input)) {
return bun.String.createExternalGloballyAllocated(.latin1, input);
}
const str, const chars = bun.String.createUninitialized(.latin1, input.len);
defer bun.default_allocator.free(input);
if (str.tag == .Dead) {
return str;
}
strings.copyLatin1IntoASCII(chars, input);
return str;
},
.latin1 => {
return bun.String.createExternalGloballyAllocated(.latin1, input);
},
.buffer, .utf8 => {
const converted = strings.toUTF16Alloc(bun.default_allocator, input, false, false) catch {
bun.default_allocator.free(input);
return bun.String.dead;
};
if (converted) |utf16| {
defer bun.default_allocator.free(input);
return bun.String.createExternalGloballyAllocated(.utf16, utf16);
}
// If we get here, it means we can safely assume the string is 100% ASCII characters
return bun.String.createExternalGloballyAllocated(.latin1, input);
},
.ucs2, .utf16le => {
// Avoid incomplete characters
if (input.len / 2 == 0) {
bun.default_allocator.free(input);
return bun.String.empty;
}
const as_u16 = std.mem.bytesAsSlice(u16, input);
return bun.String.createExternalGloballyAllocated(.utf16, @alignCast(as_u16));
},
.hex => {
defer bun.default_allocator.free(input);
const str, const chars = bun.String.createUninitialized(.latin1, input.len * 2);
if (str.tag == .Dead) {
return str;
}
const wrote = strings.encodeBytesToHex(chars, input);
// Return an empty string in this case, just like node.
if (wrote < chars.len) {
str.deref();
return bun.String.empty;
}
return str;
},
// TODO: this is not right. There is an issue here. But it needs to
// be addressed separately because constructFromU8's base64url also
// appears inconsistent with Node.js.
.base64url => {
defer bun.default_allocator.free(input);
const out, const chars = bun.String.createUninitialized(.latin1, bun.base64.urlSafeEncodeLen(input));
if (out.tag != .Dead) {
_ = bun.base64.encodeURLSafe(chars, input);
}
return out;
},
.base64 => {
defer bun.default_allocator.free(input);
const to_len = bun.base64.encodeLen(input);
const to = bun.default_allocator.alloc(u8, to_len) catch return bun.String.dead;
const wrote = bun.base64.encode(to, input);
return bun.String.createExternalGloballyAllocated(.latin1, to[0..wrote]);
},
}
}
pub fn toStringComptime(input: []const u8, global: *JSGlobalObject, comptime encoding: JSC.Node.Encoding) JSValue {
var bun_string = toBunStringComptime(input, encoding);
return bun_string.transferToJS(global);
}
pub fn toBunString(input: []const u8, encoding: JSC.Node.Encoding) bun.String {
return switch (encoding) {
inline else => |enc| toBunStringComptime(input, enc),
};
}
pub fn toBunStringComptime(input: []const u8, comptime encoding: JSC.Node.Encoding) bun.String {
if (input.len == 0)
return bun.String.empty;
switch (comptime encoding) {
.ascii => {
const str, const chars = bun.String.createUninitialized(.latin1, input.len);
strings.copyLatin1IntoASCII(chars, input);
return str;
},
.latin1 => {
const str, const chars = bun.String.createUninitialized(.latin1, input.len);
@memcpy(chars, input);
return str;
},
.buffer, .utf8 => {
const converted = strings.toUTF16Alloc(bun.default_allocator, input, false, false) catch return bun.String.dead;
if (converted) |utf16| {
return bun.String.createExternalGloballyAllocated(.utf16, utf16);
}
// If we get here, it means we can safely assume the string is 100% ASCII characters
// For this, we rely on WebKit to manage the memory.
return bun.String.createLatin1(input);
},
.ucs2, .utf16le => {
// Avoid incomplete characters
if (input.len / 2 == 0) return bun.String.empty;
const str, const chars = bun.String.createUninitialized(.utf16, input.len / 2);
var output_bytes = std.mem.sliceAsBytes(chars);
output_bytes[output_bytes.len - 1] = 0;
@memcpy(output_bytes, input[0..output_bytes.len]);
return str;
},
.hex => {
const str, const chars = bun.String.createUninitialized(.latin1, input.len * 2);
const wrote = strings.encodeBytesToHex(chars, input);
bun.assert(wrote == chars.len);
return str;
},
.base64url => {
const to_len = bun.base64.urlSafeEncodeLen(input);
const to = bun.default_allocator.alloc(u8, to_len) catch return bun.String.dead;
const wrote = bun.base64.encodeURLSafe(to, input);
return bun.String.createExternalGloballyAllocated(.latin1, to[0..wrote]);
},
.base64 => {
const to_len = bun.base64.encodeLen(input);
const to = bun.default_allocator.alloc(u8, to_len) catch return bun.String.dead;
const wrote = bun.base64.encode(to, input);
return bun.String.createExternalGloballyAllocated(.latin1, to[0..wrote]);
},
}
}
pub fn writeU8(input: [*]const u8, len: usize, to_ptr: [*]u8, to_len: usize, comptime encoding: JSC.Node.Encoding) !usize {
if (len == 0 or to_len == 0)
return 0;
// TODO: increase temporary buffer size for larger amounts of data
// defer {
// if (comptime encoding.isBinaryToText()) {}
// }
// if (comptime encoding.isBinaryToText()) {}
switch (comptime encoding) {
.buffer, .latin1 => {
const written = @min(len, to_len);
@memcpy(to_ptr[0..written], input[0..written]);
return written;
},
.ascii => {
const written = @min(len, to_len);
const to = to_ptr[0..written];
var remain = input[0..written];
if (bun.simdutf.validate.ascii(remain)) {
@memcpy(to_ptr[0..written], remain[0..written]);
} else {
strings.copyLatin1IntoASCII(to, remain);
}
return written;
},
.utf8 => {
// need to encode
return strings.copyLatin1IntoUTF8(to_ptr[0..to_len], []const u8, input[0..len]).written;
},
// encode latin1 into UTF16
.ucs2, .utf16le => {
if (to_len < 2)
return 0;
if (std.mem.isAligned(@intFromPtr(to_ptr), @alignOf([*]u16))) {
const buf = input[0..len];
const output = @as([*]u16, @ptrCast(@alignCast(to_ptr)))[0 .. to_len / 2];
const written = strings.copyLatin1IntoUTF16([]u16, output, []const u8, buf).written;
return written * 2;
} else {
const buf = input[0..len];
const output = @as([*]align(1) u16, @ptrCast(to_ptr))[0 .. to_len / 2];
const written = strings.copyLatin1IntoUTF16([]align(1) u16, output, []const u8, buf).written;
return written * 2;
}
},
.hex => {
return strings.decodeHexToBytes(to_ptr[0..to_len], u8, input[0..len]);
},
.base64, .base64url => {
return bun.base64.decode(to_ptr[0..to_len], input[0..len]).count;
},
}
}
pub fn byteLengthU8(input: [*]const u8, len: usize, comptime encoding: JSC.Node.Encoding) usize {
if (len == 0)
return 0;
switch (comptime encoding) {
.utf8 => {
return strings.elementLengthLatin1IntoUTF8([]const u8, input[0..len]);
},
.latin1, .ascii, .buffer => {
return len;
},
.ucs2, .utf16le => {
return strings.elementLengthUTF8IntoUTF16([]const u8, input[0..len]) * 2;
},
.hex => {
return len / 2;
},
.base64, .base64url => {
return bun.base64.decodeLen(input[0..len]);
},
// else => return &[_]u8{};
}
}
pub fn encodeIntoFrom16(input: []const u16, to: []u8, comptime encoding: JSC.Node.Encoding, comptime allow_partial_write: bool) !usize {
return writeU16(input.ptr, input.len, to.ptr, to.len, encoding, allow_partial_write);
}
pub fn encodeIntoFrom8(input: []const u8, to: []u8, comptime encoding: JSC.Node.Encoding) !usize {
return writeU8(input.ptr, input.len, to.ptr, to.len, encoding);
}
pub fn writeU16(input: [*]const u16, len: usize, to: [*]u8, to_len: usize, comptime encoding: JSC.Node.Encoding, comptime allow_partial_write: bool) !usize {
if (len == 0)
return 0;
switch (comptime encoding) {
.utf8 => {
return strings.copyUTF16IntoUTF8(to[0..to_len], []const u16, input[0..len], allow_partial_write).written;
},
.latin1, .ascii, .buffer => {
const out = @min(len, to_len);
strings.copyU16IntoU8(to[0..to_len], []const u16, input[0..out]);
return out;
},
// string is already encoded, just need to copy the data
.ucs2, .utf16le => {
if (allow_partial_write) {
const bytes_input_len = len * 2;
const written = @min(bytes_input_len, to_len);
const input_u8 = @as([*]const u8, @ptrCast(input));
strings.copyU16IntoU8(to[0..written], []const u8, input_u8[0..written]);
return written;
} else {
const bytes_input_len = len * 2;
const written = @min(bytes_input_len, to_len);
if (written < 2) return 0;
const fixed_len = (written / 2) * 2;
const input_u8 = @as([*]const u8, @ptrCast(input));
strings.copyU16IntoU8(to[0..written], []const u8, input_u8[0..fixed_len]);
return fixed_len;
}
},
.hex => {
return strings.decodeHexToBytes(to[0..to_len], u16, input[0..len]);
},
.base64, .base64url => {
if (to_len < 2 or len == 0)
return 0;
// very very slow case!
// shouldn't really happen though
const transcoded = strings.toUTF8Alloc(bun.default_allocator, input[0..len]) catch return 0;
defer bun.default_allocator.free(transcoded);
return writeU8(transcoded.ptr, transcoded.len, to, to_len, encoding);
},
// else => return &[_]u8{};
}
}
/// Node returns imprecise byte length here
/// Should be fast enough for us to return precise length
pub fn byteLengthU16(input: [*]const u16, len: usize, comptime encoding: JSC.Node.Encoding) usize {
if (len == 0)
return 0;
switch (comptime encoding) {
// these should be the same size
.ascii, .latin1, .utf8 => {
return strings.elementLengthUTF16IntoUTF8([]const u16, input[0..len]);
},
.ucs2, .buffer, .utf16le => {
return len * 2;
},
.hex => {
return len / 2;
},
.base64, .base64url => {
return bun.base64.decodeLenUpperBound(len);
},
// else => return &[_]u8{};
}
}
pub fn constructFrom(comptime T: type, input: []const T, allocator: std.mem.Allocator, comptime encoding: JSC.Node.Encoding) []u8 {
return switch (comptime T) {
u16 => constructFromU16(input.ptr, input.len, allocator, encoding),
u8 => constructFromU8(input.ptr, input.len, allocator, encoding),
else => @compileError("Unsupported type for constructFrom: " ++ @typeName(T)),
};
}
pub fn constructFromU8(input: [*]const u8, len: usize, allocator: std.mem.Allocator, comptime encoding: JSC.Node.Encoding) []u8 {
if (len == 0) return &[_]u8{};
switch (comptime encoding) {
.buffer => {
var to = allocator.alloc(u8, len) catch return &[_]u8{};
@memcpy(to[0..len], input[0..len]);
return to;
},
.latin1, .ascii => {
var to = allocator.alloc(u8, len) catch return &[_]u8{};
@memcpy(to[0..len], input[0..len]);
return to;
},
.utf8 => {
// need to encode
return strings.allocateLatin1IntoUTF8(allocator, []const u8, input[0..len]) catch return &[_]u8{};
},
// encode latin1 into UTF16
// return as bytes
.ucs2, .utf16le => {
var to = allocator.alloc(u16, len) catch return &[_]u8{};
_ = strings.copyLatin1IntoUTF16([]u16, to, []const u8, input[0..len]);
return std.mem.sliceAsBytes(to[0..len]);
},
.hex => {
if (len < 2)
return &[_]u8{};
var to = allocator.alloc(u8, len / 2) catch return &[_]u8{};
return to[0..strings.decodeHexToBytesTruncate(to, u8, input[0..len])];
},
.base64, .base64url => {
const slice = strings.trim(input[0..len], "\r\n\t " ++ [_]u8{std.ascii.control_code.vt});
if (slice.len == 0) return &[_]u8{};
const outlen = bun.base64.decodeLen(slice);
const to = allocator.alloc(u8, outlen) catch return &[_]u8{};
const wrote = bun.base64.decode(to[0..outlen], slice).count;
return to[0..wrote];
},
}
}
pub fn constructFromU16(input: [*]const u16, len: usize, allocator: std.mem.Allocator, comptime encoding: JSC.Node.Encoding) []u8 {
if (len == 0) return &[_]u8{};
switch (comptime encoding) {
.utf8 => {
return strings.toUTF8AllocWithType(allocator, []const u16, input[0..len]) catch return &[_]u8{};
},
.latin1, .buffer, .ascii => {
var to = allocator.alloc(u8, len) catch return &[_]u8{};
strings.copyU16IntoU8(to[0..len], []const u16, input[0..len]);
return to;
},
// string is already encoded, just need to copy the data
.ucs2, .utf16le => {
var to = std.mem.sliceAsBytes(allocator.alloc(u16, len) catch return &[_]u8{});
const bytes = std.mem.sliceAsBytes(input[0..len]);
@memcpy(to[0..bytes.len], bytes);
return to;
},
.hex => {
var to = allocator.alloc(u8, len * 2) catch return &[_]u8{};
return to[0..strings.decodeHexToBytesTruncate(to, u16, input[0..len])];
},
.base64, .base64url => {
// very very slow case!
// shouldn't really happen though
const transcoded = strings.toUTF8Alloc(allocator, input[0..len]) catch return &[_]u8{};
defer allocator.free(transcoded);
return constructFromU8(transcoded.ptr, transcoded.len, allocator, encoding);
},
}
}
comptime {
if (!JSC.is_bindgen) {
_ = Bun__encoding__writeLatin1;
_ = Bun__encoding__writeUTF16;
_ = Bun__encoding__byteLengthLatin1;
_ = Bun__encoding__byteLengthUTF16;
_ = Bun__encoding__toString;
_ = Bun__encoding__toStringUTF8;
_ = Bun__encoding__constructFromLatin1;
_ = Bun__encoding__constructFromUTF16;
}
}
};
comptime {
if (!JSC.is_bindgen) {
std.testing.refAllDecls(Encoder);
}
}