Files
bun.sh/src/StandaloneModuleGraph.zig
taylor.fish eb04e4e640 Make bun.webcore.Blob smaller and ref-counted (#23015)
Reduce the size of `bun.webcore.Blob` from 120 bytes to 96. Also make it
ref-counted: in-progress work on improving the bindings generator
depends on this, as it means C++ can pass a pointer to the `Blob` to Zig
without risking it being destroyed if the GC collects the associated
`JSBlob`.

Note that this PR depends on #23013.

(For internal tracking: fixes STAB-1289, STAB-1290)
2025-09-26 17:18:30 -07:00

1509 lines
65 KiB
Zig

//! Originally, we tried using LIEF to inject the module graph into a MachO segment
//! But this incurred a fixed 350ms overhead on every build, which is unacceptable
//! so we give up on codesigning support on macOS for now until we can find a better solution
pub const StandaloneModuleGraph = struct {
bytes: []const u8 = "",
files: bun.StringArrayHashMap(File),
entry_point_id: u32 = 0,
compile_exec_argv: []const u8 = "",
// We never want to hit the filesystem for these files
// We use the `/$bunfs/` prefix to indicate that it's a virtual path
// It is `/$bunfs/` because:
//
// - `$` makes it unlikely to collide with a real path
// - `/$bunfs/` is 8 characters which is fast to compare for 64-bit CPUs
pub const base_path = switch (Environment.os) {
else => "/$bunfs/",
// Special case for windows because of file URLs being invalid
// if they do not have a drive letter. B drive because 'bun' but
// also because it's more unlikely to collide with a real path.
.windows => "B:\\~BUN\\",
};
pub const base_public_path = targetBasePublicPath(Environment.os, "");
pub const base_public_path_with_default_suffix = targetBasePublicPath(Environment.os, "root/");
const Instance = struct {
pub var instance: ?*StandaloneModuleGraph = null;
};
pub fn get() ?*StandaloneModuleGraph {
return Instance.instance;
}
pub fn set(instance: *StandaloneModuleGraph) void {
Instance.instance = instance;
}
pub fn targetBasePublicPath(target: Environment.OperatingSystem, comptime suffix: [:0]const u8) [:0]const u8 {
return switch (target) {
.windows => "B:/~BUN/" ++ suffix,
else => "/$bunfs/" ++ suffix,
};
}
pub fn isBunStandaloneFilePathCanonicalized(str: []const u8) bool {
return bun.strings.hasPrefixComptime(str, base_path) or
(Environment.isWindows and bun.strings.hasPrefixComptime(str, base_public_path));
}
pub fn isBunStandaloneFilePath(str: []const u8) bool {
if (Environment.isWindows) {
// On Windows, remove NT path prefixes before checking
const canonicalized = strings.withoutNTPrefix(u8, str);
return isBunStandaloneFilePathCanonicalized(canonicalized);
}
return isBunStandaloneFilePathCanonicalized(str);
}
pub fn entryPoint(this: *const StandaloneModuleGraph) *File {
return &this.files.values()[this.entry_point_id];
}
// by normalized file path
pub fn find(this: *const StandaloneModuleGraph, name: []const u8) ?*File {
if (!isBunStandaloneFilePath(name)) {
return null;
}
return this.findAssumeStandalonePath(name);
}
pub fn stat(this: *const StandaloneModuleGraph, name: []const u8) ?bun.Stat {
const file = this.find(name) orelse return null;
return file.stat();
}
pub fn findAssumeStandalonePath(this: *const StandaloneModuleGraph, name: []const u8) ?*File {
if (Environment.isWindows) {
var normalized_buf: bun.PathBuffer = undefined;
const input = strings.withoutNTPrefix(u8, name);
const normalized = bun.path.platformToPosixBuf(u8, input, &normalized_buf);
return this.files.getPtr(normalized);
}
return this.files.getPtr(name);
}
pub const CompiledModuleGraphFile = struct {
name: Schema.StringPointer = .{},
contents: Schema.StringPointer = .{},
sourcemap: Schema.StringPointer = .{},
bytecode: Schema.StringPointer = .{},
encoding: Encoding = .latin1,
loader: bun.options.Loader = .file,
module_format: ModuleFormat = .none,
side: FileSide = .server,
};
pub const FileSide = enum(u8) {
server = 0,
client = 1,
};
pub const Encoding = enum(u8) {
binary = 0,
latin1 = 1,
// Not used yet.
utf8 = 2,
};
pub const ModuleFormat = enum(u8) {
none = 0,
esm = 1,
cjs = 2,
};
const Macho = struct {
pub extern "C" fn Bun__getStandaloneModuleGraphMachoLength() ?*align(1) u32;
pub fn getData() ?[]const u8 {
if (Bun__getStandaloneModuleGraphMachoLength()) |length| {
if (length.* < 8) {
return null;
}
const slice_ptr: [*]const u8 = @ptrCast(length);
return slice_ptr[4..][0..length.*];
}
return null;
}
};
const PE = struct {
pub extern "C" fn Bun__getStandaloneModuleGraphPELength() u32;
pub extern "C" fn Bun__getStandaloneModuleGraphPEData() ?[*]u8;
pub fn getData() ?[]const u8 {
const length = Bun__getStandaloneModuleGraphPELength();
if (length == 0) return null;
const data_ptr = Bun__getStandaloneModuleGraphPEData() orelse return null;
return data_ptr[0..length];
}
};
pub const File = struct {
name: []const u8 = "",
loader: bun.options.Loader,
contents: [:0]const u8 = "",
sourcemap: LazySourceMap,
cached_blob: ?*bun.webcore.Blob = null,
encoding: Encoding = .binary,
wtf_string: bun.String = bun.String.empty,
bytecode: []u8 = "",
module_format: ModuleFormat = .none,
side: FileSide = .server,
pub fn appearsInEmbeddedFilesArray(this: *const File) bool {
return this.side == .client or !this.loader.isJavaScriptLike();
}
pub fn stat(this: *const File) bun.Stat {
var result = std.mem.zeroes(bun.Stat);
result.size = @intCast(this.contents.len);
result.mode = bun.S.IFREG | 0o644;
return result;
}
pub fn lessThanByIndex(ctx: []const File, lhs_i: u32, rhs_i: u32) bool {
const lhs = ctx[lhs_i];
const rhs = ctx[rhs_i];
return bun.strings.cmpStringsAsc({}, lhs.name, rhs.name);
}
pub fn toWTFString(this: *File) bun.String {
if (this.wtf_string.isEmpty()) {
switch (this.encoding) {
.binary, .utf8 => {
this.wtf_string = bun.String.cloneUTF8(this.contents);
},
.latin1 => {
this.wtf_string = bun.String.createStaticExternal(this.contents, true);
},
}
}
// We don't want this to free.
return this.wtf_string.dupeRef();
}
pub fn blob(this: *File, globalObject: *bun.jsc.JSGlobalObject) *bun.webcore.Blob {
if (this.cached_blob == null) {
const store = bun.webcore.Blob.Store.init(@constCast(this.contents), bun.default_allocator);
// make it never free
store.ref();
const b = bun.webcore.Blob.initWithStore(store, globalObject).new();
if (bun.http.MimeType.byExtensionNoDefault(bun.strings.trimLeadingChar(std.fs.path.extension(this.name), '.'))) |mime| {
store.mime_type = mime;
b.content_type = mime.value;
b.content_type_was_set = true;
b.content_type_allocated = false;
}
// The real name goes here:
store.data.bytes.stored_name = bun.PathString.init(this.name);
// The pretty name goes here:
if (strings.hasPrefixComptime(this.name, base_public_path_with_default_suffix)) {
b.name = bun.String.cloneUTF8(this.name[base_public_path_with_default_suffix.len..]);
} else if (this.name.len > 0) {
b.name = bun.String.cloneUTF8(this.name);
}
this.cached_blob = b;
}
return this.cached_blob.?;
}
};
pub const LazySourceMap = union(enum) {
serialized: SerializedSourceMap,
parsed: *SourceMap.ParsedSourceMap,
none,
/// It probably is not possible to run two decoding jobs on the same file
var init_lock: bun.Mutex = .{};
pub fn load(this: *LazySourceMap) ?*SourceMap.ParsedSourceMap {
init_lock.lock();
defer init_lock.unlock();
return switch (this.*) {
.none => null,
.parsed => |map| map,
.serialized => |serialized| {
var stored = switch (SourceMap.Mapping.parse(
bun.default_allocator,
serialized.mappingVLQ(),
null,
std.math.maxInt(i32),
std.math.maxInt(i32),
.{},
)) {
.success => |x| x,
.fail => {
this.* = .none;
return null;
},
};
const source_files = serialized.sourceFileNames();
const slices = bun.handleOom(bun.default_allocator.alloc(?[]u8, source_files.len * 2));
const file_names: [][]const u8 = @ptrCast(slices[0..source_files.len]);
const decompressed_contents_slice = slices[source_files.len..][0..source_files.len];
for (file_names, source_files) |*dest, src| {
dest.* = src.slice(serialized.bytes);
}
@memset(decompressed_contents_slice, null);
const data = bun.new(SerializedSourceMap.Loaded, .{
.map = serialized,
.decompressed_files = decompressed_contents_slice,
});
stored.external_source_names = file_names;
stored.underlying_provider = .{ .data = @truncate(@intFromPtr(data)), .load_hint = .none, .kind = .zig };
stored.is_standalone_module_graph = true;
const parsed = bun.new(SourceMap.ParsedSourceMap, stored);
parsed.ref(); // never free
this.* = .{ .parsed = parsed };
return parsed;
},
};
}
};
pub const Offsets = extern struct {
byte_count: usize = 0,
modules_ptr: bun.StringPointer = .{},
entry_point_id: u32 = 0,
compile_exec_argv_ptr: bun.StringPointer = .{},
};
const trailer = "\n---- Bun! ----\n";
pub fn fromBytes(allocator: std.mem.Allocator, raw_bytes: []u8, offsets: Offsets) !StandaloneModuleGraph {
if (raw_bytes.len == 0) return StandaloneModuleGraph{
.files = bun.StringArrayHashMap(File).init(allocator),
};
const modules_list_bytes = sliceTo(raw_bytes, offsets.modules_ptr);
const modules_list: []align(1) const CompiledModuleGraphFile = std.mem.bytesAsSlice(CompiledModuleGraphFile, modules_list_bytes);
if (offsets.entry_point_id > modules_list.len) {
return error.@"Corrupted module graph: entry point ID is greater than module list count";
}
var modules = bun.StringArrayHashMap(File).init(allocator);
try modules.ensureTotalCapacity(modules_list.len);
for (modules_list) |module| {
modules.putAssumeCapacity(
sliceToZ(raw_bytes, module.name),
File{
.name = sliceToZ(raw_bytes, module.name),
.loader = module.loader,
.contents = sliceToZ(raw_bytes, module.contents),
.sourcemap = if (module.sourcemap.length > 0)
.{ .serialized = .{
.bytes = @alignCast(sliceTo(raw_bytes, module.sourcemap)),
} }
else
.none,
.bytecode = if (module.bytecode.length > 0) @constCast(sliceTo(raw_bytes, module.bytecode)) else &.{},
.module_format = module.module_format,
.side = module.side,
},
);
}
modules.lockPointers(); // make the pointers stable forever
return StandaloneModuleGraph{
.bytes = raw_bytes[0..offsets.byte_count],
.files = modules,
.entry_point_id = offsets.entry_point_id,
.compile_exec_argv = sliceToZ(raw_bytes, offsets.compile_exec_argv_ptr),
};
}
fn sliceTo(bytes: []const u8, ptr: bun.StringPointer) []const u8 {
if (ptr.length == 0) return "";
return bytes[ptr.offset..][0..ptr.length];
}
fn sliceToZ(bytes: []const u8, ptr: bun.StringPointer) [:0]const u8 {
if (ptr.length == 0) return "";
return bytes[ptr.offset..][0..ptr.length :0];
}
pub fn toBytes(allocator: std.mem.Allocator, prefix: []const u8, output_files: []const bun.options.OutputFile, output_format: bun.options.Format, compile_exec_argv: []const u8) ![]u8 {
var serialize_trace = bun.perf.trace("StandaloneModuleGraph.serialize");
defer serialize_trace.end();
var entry_point_id: ?usize = null;
var string_builder = bun.StringBuilder{};
var module_count: usize = 0;
for (output_files) |*output_file| {
string_builder.countZ(output_file.dest_path);
string_builder.countZ(prefix);
if (output_file.value == .buffer) {
if (output_file.output_kind == .sourcemap) {
// This is an over-estimation to ensure that we allocate
// enough memory for the source-map contents. Calculating
// the exact amount is not possible without allocating as it
// involves a JSON parser.
string_builder.cap += output_file.value.buffer.bytes.len * 2;
} else if (output_file.output_kind == .bytecode) {
// Allocate up to 256 byte alignment for bytecode
string_builder.cap += (output_file.value.buffer.bytes.len + 255) / 256 * 256 + 256;
} else {
if (entry_point_id == null) {
if (output_file.side == null or output_file.side.? == .server) {
if (output_file.output_kind == .@"entry-point") {
entry_point_id = module_count;
}
}
}
string_builder.countZ(output_file.value.buffer.bytes);
module_count += 1;
}
}
}
if (module_count == 0 or entry_point_id == null) return &[_]u8{};
string_builder.cap += @sizeOf(CompiledModuleGraphFile) * output_files.len;
string_builder.cap += trailer.len;
string_builder.cap += 16;
string_builder.cap += @sizeOf(Offsets);
string_builder.countZ(compile_exec_argv);
try string_builder.allocate(allocator);
var modules = try std.ArrayList(CompiledModuleGraphFile).initCapacity(allocator, module_count);
var source_map_header_list = std.ArrayList(u8).init(allocator);
defer source_map_header_list.deinit();
var source_map_string_list = std.ArrayList(u8).init(allocator);
defer source_map_string_list.deinit();
var source_map_arena = bun.ArenaAllocator.init(allocator);
defer source_map_arena.deinit();
for (output_files) |*output_file| {
if (!output_file.output_kind.isFileInStandaloneMode()) {
continue;
}
if (output_file.value != .buffer) {
continue;
}
const dest_path = bun.strings.removeLeadingDotSlash(output_file.dest_path);
const bytecode: StringPointer = brk: {
if (output_file.bytecode_index != std.math.maxInt(u32)) {
// Use up to 256 byte alignment for bytecode
// Not aligning it correctly will cause a runtime assertion error, or a segfault.
const bytecode = output_files[output_file.bytecode_index].value.buffer.bytes;
const aligned = std.mem.alignInSlice(string_builder.writable(), 128).?;
@memcpy(aligned[0..bytecode.len], bytecode[0..bytecode.len]);
const unaligned_space = aligned[bytecode.len..];
const offset = @intFromPtr(aligned.ptr) - @intFromPtr(string_builder.ptr.?);
const len = bytecode.len + @min(unaligned_space.len, 128);
string_builder.len += len;
break :brk StringPointer{ .offset = @truncate(offset), .length = @truncate(len) };
} else {
break :brk .{};
}
};
var module = CompiledModuleGraphFile{
.name = string_builder.fmtAppendCountZ("{s}{s}", .{
prefix,
dest_path,
}),
.loader = output_file.loader,
.contents = string_builder.appendCountZ(output_file.value.buffer.bytes),
.encoding = switch (output_file.loader) {
.js, .jsx, .ts, .tsx => .latin1,
else => .binary,
},
.module_format = if (output_file.loader.isJavaScriptLike()) switch (output_format) {
.cjs => .cjs,
.esm => .esm,
else => .none,
} else .none,
.bytecode = bytecode,
.side = switch (output_file.side orelse .server) {
.server => .server,
.client => .client,
},
};
if (output_file.source_map_index != std.math.maxInt(u32)) {
defer source_map_header_list.clearRetainingCapacity();
defer source_map_string_list.clearRetainingCapacity();
_ = source_map_arena.reset(.retain_capacity);
try serializeJsonSourceMapForStandalone(
&source_map_header_list,
&source_map_string_list,
source_map_arena.allocator(),
output_files[output_file.source_map_index].value.buffer.bytes,
);
module.sourcemap = string_builder.addConcat(&.{
source_map_header_list.items,
source_map_string_list.items,
});
}
modules.appendAssumeCapacity(module);
}
const offsets = Offsets{
.entry_point_id = @as(u32, @truncate(entry_point_id.?)),
.modules_ptr = string_builder.appendCount(std.mem.sliceAsBytes(modules.items)),
.compile_exec_argv_ptr = string_builder.appendCountZ(compile_exec_argv),
.byte_count = string_builder.len,
};
_ = string_builder.append(std.mem.asBytes(&offsets));
_ = string_builder.append(trailer);
const output_bytes = string_builder.ptr.?[0..string_builder.len];
if (comptime Environment.isDebug) {
// An expensive sanity check:
var graph = try fromBytes(allocator, @alignCast(output_bytes), offsets);
defer {
graph.files.unlockPointers();
graph.files.deinit();
}
bun.assert_eql(graph.files.count(), modules.items.len);
}
return output_bytes;
}
const page_size = std.heap.page_size_max;
pub const InjectOptions = bun.options.WindowsOptions;
pub const CompileResult = union(enum) {
success: void,
error_message: []const u8,
pub fn fail(msg: []const u8) CompileResult {
return .{ .error_message = msg };
}
pub fn deinit(this: *const @This()) void {
if (this.* == .error_message) {
bun.default_allocator.free(this.error_message);
}
}
};
pub fn inject(bytes: []const u8, self_exe: [:0]const u8, inject_options: InjectOptions, target: *const CompileTarget) bun.FileDescriptor {
var buf: bun.PathBuffer = undefined;
var zname: [:0]const u8 = bun.span(bun.fs.FileSystem.instance.tmpname("bun-build", &buf, @as(u64, @bitCast(std.time.milliTimestamp()))) catch |err| {
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to get temporary file name: {s}", .{@errorName(err)});
return bun.invalid_fd;
});
const cleanup = struct {
pub fn toClean(name: [:0]const u8, fd: bun.FileDescriptor) void {
// Ensure we own the file
if (Environment.isPosix) {
// Make the file writable so we can delete it
_ = Syscall.fchmod(fd, 0o777);
}
fd.close();
_ = Syscall.unlink(name);
}
}.toClean;
const cloned_executable_fd: bun.FileDescriptor = brk: {
if (comptime Environment.isWindows) {
// copy self and then open it for writing
var in_buf: bun.WPathBuffer = undefined;
strings.copyU8IntoU16(&in_buf, self_exe);
in_buf[self_exe.len] = 0;
const in = in_buf[0..self_exe.len :0];
var out_buf: bun.WPathBuffer = undefined;
strings.copyU8IntoU16(&out_buf, zname);
out_buf[zname.len] = 0;
const out = out_buf[0..zname.len :0];
bun.copyFile(in, out).unwrap() catch |err| {
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to copy bun executable into temporary file: {s}", .{@errorName(err)});
return bun.invalid_fd;
};
const file = bun.sys.openFileAtWindows(
bun.invalid_fd,
out,
.{
.access_mask = w.SYNCHRONIZE | w.GENERIC_WRITE | w.GENERIC_READ | w.DELETE,
.disposition = w.FILE_OPEN,
.options = w.FILE_SYNCHRONOUS_IO_NONALERT | w.FILE_OPEN_REPARSE_POINT,
},
).unwrap() catch |e| {
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to open temporary file to copy bun into\n{}", .{e});
return bun.invalid_fd;
};
break :brk file;
}
if (comptime Environment.isMac) {
// if we're on a mac, use clonefile() if we can
// failure is okay, clonefile is just a fast path.
if (Syscall.clonefile(self_exe, zname) == .result) {
switch (Syscall.open(zname, bun.O.RDWR | bun.O.CLOEXEC, 0)) {
.result => |res| break :brk res,
.err => {},
}
}
}
// otherwise, just copy the file
const fd = brk2: {
var tried_changing_abs_dir = false;
for (0..3) |retry| {
switch (Syscall.open(zname, bun.O.CLOEXEC | bun.O.RDWR | bun.O.CREAT, 0)) {
.result => |res| break :brk2 res,
.err => |err| {
if (retry < 2) {
// they may not have write access to the present working directory
//
// but we want to default to it since it's the
// least likely to need to be copied due to
// renameat() across filesystems
//
// so in the event of a failure, we try to
// we retry using the tmp dir
//
// but we only do that once because otherwise it's just silly
if (!tried_changing_abs_dir) {
tried_changing_abs_dir = true;
const zname_z = bun.strings.concat(bun.default_allocator, &.{
bun.fs.FileSystem.instance.fs.tmpdirPath(),
std.fs.path.sep_str,
zname,
&.{0},
}) catch |e| bun.handleOom(e);
zname = zname_z[0..zname_z.len -| 1 :0];
continue;
}
switch (err.getErrno()) {
// try again
.PERM, .AGAIN, .BUSY => continue,
else => break,
}
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to open temporary file to copy bun into\n{}", .{err});
// No fd to cleanup yet, just return error
return bun.invalid_fd;
}
},
}
}
unreachable;
};
const self_fd: bun.FileDescriptor = brk2: {
for (0..3) |retry| {
switch (Syscall.open(self_exe, bun.O.CLOEXEC | bun.O.RDONLY, 0)) {
.result => |res| break :brk2 res,
.err => |err| {
if (retry < 2) {
switch (err.getErrno()) {
// try again
.PERM, .AGAIN, .BUSY => continue,
else => {},
}
}
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to open bun executable to copy from as read-only\n{}", .{err});
cleanup(zname, fd);
return bun.invalid_fd;
},
}
}
unreachable;
};
defer self_fd.close();
bun.copyFile(self_fd, fd).unwrap() catch |err| {
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to copy bun executable into temporary file: {s}", .{@errorName(err)});
cleanup(zname, fd);
return bun.invalid_fd;
};
break :brk fd;
};
switch (target.os) {
.mac => {
const input_result = bun.sys.File.readToEnd(.{ .handle = cloned_executable_fd }, bun.default_allocator);
if (input_result.err) |err| {
Output.prettyErrorln("Error reading standalone module graph: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
}
var macho_file = bun.macho.MachoFile.init(bun.default_allocator, input_result.bytes.items, bytes.len) catch |err| {
Output.prettyErrorln("Error initializing standalone module graph: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
defer macho_file.deinit();
macho_file.writeSection(bytes) catch |err| {
Output.prettyErrorln("Error writing standalone module graph: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
input_result.bytes.deinit();
switch (Syscall.setFileOffset(cloned_executable_fd, 0)) {
.err => |err| {
Output.prettyErrorln("Error seeking to start of temporary file: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
},
else => {},
}
var file = bun.sys.File{ .handle = cloned_executable_fd };
const writer = file.writer();
const BufferedWriter = std.io.BufferedWriter(512 * 1024, @TypeOf(writer));
var buffered_writer = bun.handleOom(bun.default_allocator.create(BufferedWriter));
buffered_writer.* = .{
.unbuffered_writer = writer,
};
macho_file.buildAndSign(buffered_writer.writer()) catch |err| {
Output.prettyErrorln("Error writing standalone module graph: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
buffered_writer.flush() catch |err| {
Output.prettyErrorln("Error flushing standalone module graph: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
if (comptime !Environment.isWindows) {
_ = bun.c.fchmod(cloned_executable_fd.native(), 0o777);
}
return cloned_executable_fd;
},
.windows => {
const input_result = bun.sys.File.readToEnd(.{ .handle = cloned_executable_fd }, bun.default_allocator);
if (input_result.err) |err| {
Output.prettyErrorln("Error reading standalone module graph: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
}
var pe_file = bun.pe.PEFile.init(bun.default_allocator, input_result.bytes.items) catch |err| {
Output.prettyErrorln("Error initializing PE file: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
defer pe_file.deinit();
// Always strip authenticode when adding .bun section for --compile
pe_file.addBunSection(bytes, .strip_always) catch |err| {
Output.prettyErrorln("Error adding Bun section to PE file: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
input_result.bytes.deinit();
switch (Syscall.setFileOffset(cloned_executable_fd, 0)) {
.err => |err| {
Output.prettyErrorln("Error seeking to start of temporary file: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
},
else => {},
}
var file = bun.sys.File{ .handle = cloned_executable_fd };
const writer = file.writer();
pe_file.write(writer) catch |err| {
Output.prettyErrorln("Error writing PE file: {}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
// Set executable permissions when running on POSIX hosts, even for Windows targets
if (comptime !Environment.isWindows) {
_ = bun.c.fchmod(cloned_executable_fd.native(), 0o777);
}
return cloned_executable_fd;
},
else => {
var total_byte_count: usize = undefined;
if (Environment.isWindows) {
total_byte_count = bytes.len + 8 + (Syscall.setFileOffsetToEndWindows(cloned_executable_fd).unwrap() catch |err| {
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to seek to end of temporary file\n{}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
});
} else {
const seek_position = @as(u64, @intCast(brk: {
const fstat = switch (Syscall.fstat(cloned_executable_fd)) {
.result => |res| res,
.err => |err| {
Output.prettyErrorln("{}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
},
};
break :brk @max(fstat.size, 0);
}));
total_byte_count = seek_position + bytes.len + 8;
// From https://man7.org/linux/man-pages/man2/lseek.2.html
//
// lseek() allows the file offset to be set beyond the end of the
// file (but this does not change the size of the file). If data is
// later written at this point, subsequent reads of the data in the
// gap (a "hole") return null bytes ('\0') until data is actually
// written into the gap.
//
switch (Syscall.setFileOffset(cloned_executable_fd, seek_position)) {
.err => |err| {
Output.prettyErrorln(
"{}\nwhile seeking to end of temporary file (pos: {d})",
.{
err,
seek_position,
},
);
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
},
else => {},
}
}
var remain = bytes;
while (remain.len > 0) {
switch (Syscall.write(cloned_executable_fd, bytes)) {
.result => |written| remain = remain[written..],
.err => |err| {
Output.prettyErrorln("<r><red>error<r><d>:<r> failed to write to temporary file\n{}", .{err});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
},
}
}
// the final 8 bytes in the file are the length of the module graph with padding, excluding the trailer and offsets
_ = Syscall.write(cloned_executable_fd, std.mem.asBytes(&total_byte_count));
if (comptime !Environment.isWindows) {
_ = bun.c.fchmod(cloned_executable_fd.native(), 0o777);
}
return cloned_executable_fd;
},
}
if (Environment.isWindows and inject_options.hide_console) {
bun.windows.editWin32BinarySubsystem(.{ .handle = cloned_executable_fd }, .windows_gui) catch |err| {
Output.err(err, "failed to disable console on executable", .{});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
}
// Set Windows icon and/or metadata if any options are provided (single operation)
if (Environment.isWindows and (inject_options.icon != null or
inject_options.title != null or
inject_options.publisher != null or
inject_options.version != null or
inject_options.description != null or
inject_options.copyright != null))
{
var zname_buf: bun.OSPathBuffer = undefined;
const zname_w = bun.strings.toWPathNormalized(&zname_buf, zname) catch |err| {
Output.err(err, "failed to resolve executable path", .{});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
// Single call to set all Windows metadata at once
bun.windows.rescle.setWindowsMetadata(
zname_w.ptr,
inject_options.icon,
inject_options.title,
inject_options.publisher,
inject_options.version,
inject_options.description,
inject_options.copyright,
) catch |err| {
Output.err(err, "failed to set Windows metadata on executable", .{});
cleanup(zname, cloned_executable_fd);
return bun.invalid_fd;
};
}
return cloned_executable_fd;
}
pub const CompileTarget = @import("./compile_target.zig");
pub fn download(allocator: std.mem.Allocator, target: *const CompileTarget, env: *bun.DotEnv.Loader) ![:0]const u8 {
var exe_path_buf: bun.PathBuffer = undefined;
var version_str_buf: [1024]u8 = undefined;
const version_str = try std.fmt.bufPrintZ(&version_str_buf, "{}", .{target});
var needs_download: bool = true;
const dest_z = target.exePath(&exe_path_buf, version_str, env, &needs_download);
if (needs_download) {
target.downloadToPath(env, allocator, dest_z) catch |err| {
// For CLI, provide detailed error messages and exit
switch (err) {
error.TargetNotFound => {
Output.errGeneric(
\\Does this target and version of Bun exist?
\\
\\404 downloading {} from npm registry
, .{target.*});
},
error.NetworkError => {
Output.errGeneric(
\\Failed to download cross-compilation target.
\\
\\Network error downloading {} from npm registry
, .{target.*});
},
error.InvalidResponse => {
Output.errGeneric(
\\Failed to verify the integrity of the downloaded tarball.
\\
\\The downloaded content for {} appears to be corrupted
, .{target.*});
},
error.ExtractionFailed => {
Output.errGeneric(
\\Failed to extract the downloaded tarball.
\\
\\Could not extract executable for {}
, .{target.*});
},
else => {
Output.errGeneric("Failed to download {}: {s}", .{ target.*, @errorName(err) });
},
}
return error.DownloadFailed;
};
}
return try allocator.dupeZ(u8, dest_z);
}
pub fn toExecutable(
target: *const CompileTarget,
allocator: std.mem.Allocator,
output_files: []const bun.options.OutputFile,
root_dir: std.fs.Dir,
module_prefix: []const u8,
outfile: []const u8,
env: *bun.DotEnv.Loader,
output_format: bun.options.Format,
windows_options: bun.options.WindowsOptions,
compile_exec_argv: []const u8,
self_exe_path: ?[]const u8,
) !CompileResult {
const bytes = toBytes(allocator, module_prefix, output_files, output_format, compile_exec_argv) catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "failed to generate module graph bytes: {s}", .{@errorName(err)}) catch "failed to generate module graph bytes");
};
if (bytes.len == 0) return CompileResult.fail("no output files to bundle");
defer allocator.free(bytes);
var free_self_exe = false;
const self_exe = if (self_exe_path) |path| brk: {
free_self_exe = true;
break :brk bun.handleOom(allocator.dupeZ(u8, path));
} else if (target.isDefault())
bun.selfExePath() catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "failed to get self executable path: {s}", .{@errorName(err)}) catch "failed to get self executable path");
}
else blk: {
var exe_path_buf: bun.PathBuffer = undefined;
var version_str_buf: [1024]u8 = undefined;
const version_str = std.fmt.bufPrintZ(&version_str_buf, "{}", .{target}) catch {
return CompileResult.fail("failed to format target version string");
};
var needs_download: bool = true;
const dest_z = target.exePath(&exe_path_buf, version_str, env, &needs_download);
if (needs_download) {
target.downloadToPath(env, allocator, dest_z) catch |err| {
const msg = switch (err) {
error.TargetNotFound => std.fmt.allocPrint(allocator, "Target platform '{}' is not available for download. Check if this version of Bun supports this target.", .{target}) catch "Target platform not available for download",
error.NetworkError => std.fmt.allocPrint(allocator, "Network error downloading executable for '{}'. Check your internet connection and proxy settings.", .{target}) catch "Network error downloading executable",
error.InvalidResponse => std.fmt.allocPrint(allocator, "Downloaded file for '{}' appears to be corrupted. Please try again.", .{target}) catch "Downloaded file is corrupted",
error.ExtractionFailed => std.fmt.allocPrint(allocator, "Failed to extract executable for '{}'. The download may be incomplete.", .{target}) catch "Failed to extract downloaded executable",
error.UnsupportedTarget => std.fmt.allocPrint(allocator, "Target '{}' is not supported", .{target}) catch "Unsupported target",
else => std.fmt.allocPrint(allocator, "Failed to download '{}': {s}", .{ target, @errorName(err) }) catch "Download failed",
};
return CompileResult.fail(msg);
};
}
free_self_exe = true;
break :blk bun.handleOom(allocator.dupeZ(u8, dest_z));
};
defer if (free_self_exe) {
allocator.free(self_exe);
};
var fd = inject(
bytes,
self_exe,
windows_options,
target,
);
defer if (fd != bun.invalid_fd) fd.close();
bun.debugAssert(fd.kind == .system);
if (Environment.isPosix) {
// Set executable permissions (0o755 = rwxr-xr-x) - makes it executable for owner, readable/executable for group and others
_ = Syscall.fchmod(fd, 0o755);
}
if (Environment.isWindows) {
// Get the current path of the temp file
var temp_buf: bun.PathBuffer = undefined;
const temp_path = bun.getFdPath(fd, &temp_buf) catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "Failed to get temp file path: {s}", .{@errorName(err)}) catch "Failed to get temp file path");
};
// Build the absolute destination path
// On Windows, we need an absolute path for MoveFileExW
// Get the current working directory and join with outfile
var cwd_buf: bun.PathBuffer = undefined;
const cwd_path = bun.getcwd(&cwd_buf) catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "Failed to get current directory: {s}", .{@errorName(err)}) catch "Failed to get current directory");
};
const dest_path = if (std.fs.path.isAbsolute(outfile))
outfile
else
bun.path.joinAbsString(cwd_path, &[_][]const u8{outfile}, .auto);
// Convert paths to Windows UTF-16
var temp_buf_w: bun.OSPathBuffer = undefined;
var dest_buf_w: bun.OSPathBuffer = undefined;
const temp_w = bun.strings.toWPathNormalized(&temp_buf_w, temp_path);
const dest_w = bun.strings.toWPathNormalized(&dest_buf_w, dest_path);
// Ensure null termination
const temp_buf_u16 = bun.reinterpretSlice(u16, &temp_buf_w);
const dest_buf_u16 = bun.reinterpretSlice(u16, &dest_buf_w);
temp_buf_u16[temp_w.len] = 0;
dest_buf_u16[dest_w.len] = 0;
// Close the file handle before moving (Windows requires this)
fd.close();
fd = bun.invalid_fd;
// Move the file using MoveFileExW
if (bun.windows.kernel32.MoveFileExW(temp_buf_u16[0..temp_w.len :0].ptr, dest_buf_u16[0..dest_w.len :0].ptr, bun.windows.MOVEFILE_COPY_ALLOWED | bun.windows.MOVEFILE_REPLACE_EXISTING | bun.windows.MOVEFILE_WRITE_THROUGH) == bun.windows.FALSE) {
const err = bun.windows.Win32Error.get();
if (err.toSystemErrno()) |sys_err| {
if (sys_err == .EISDIR) {
return CompileResult.fail(std.fmt.allocPrint(allocator, "{s} is a directory. Please choose a different --outfile or delete the directory", .{outfile}) catch "outfile is a directory");
} else {
return CompileResult.fail(std.fmt.allocPrint(allocator, "failed to move executable to {s}: {s}", .{ dest_path, @tagName(sys_err) }) catch "failed to move executable");
}
} else {
return CompileResult.fail(std.fmt.allocPrint(allocator, "failed to move executable to {s}", .{dest_path}) catch "failed to move executable");
}
}
// Set Windows icon and/or metadata using unified function
if (windows_options.icon != null or
windows_options.title != null or
windows_options.publisher != null or
windows_options.version != null or
windows_options.description != null or
windows_options.copyright != null)
{
// The file has been moved to dest_path
bun.windows.rescle.setWindowsMetadata(
dest_buf_u16[0..dest_w.len :0].ptr,
windows_options.icon,
windows_options.title,
windows_options.publisher,
windows_options.version,
windows_options.description,
windows_options.copyright,
) catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "Failed to set Windows metadata: {s}", .{@errorName(err)}) catch "Failed to set Windows metadata");
};
}
return .success;
}
var buf: bun.PathBuffer = undefined;
const temp_location = bun.getFdPath(fd, &buf) catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "failed to get path for fd: {s}", .{@errorName(err)}) catch "failed to get path for file descriptor");
};
const temp_posix = std.posix.toPosixPath(temp_location) catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "path too long: {s}", .{@errorName(err)}) catch "path too long");
};
const outfile_basename = std.fs.path.basename(outfile);
const outfile_posix = std.posix.toPosixPath(outfile_basename) catch |err| {
return CompileResult.fail(std.fmt.allocPrint(allocator, "outfile name too long: {s}", .{@errorName(err)}) catch "outfile name too long");
};
bun.sys.moveFileZWithHandle(
fd,
bun.FD.cwd(),
bun.sliceTo(&temp_posix, 0),
.fromStdDir(root_dir),
bun.sliceTo(&outfile_posix, 0),
) catch |err| {
fd.close();
fd = bun.invalid_fd;
_ = Syscall.unlink(&temp_posix);
if (err == error.IsDir or err == error.EISDIR) {
return CompileResult.fail(std.fmt.allocPrint(allocator, "{s} is a directory. Please choose a different --outfile or delete the directory", .{outfile}) catch "outfile is a directory");
} else {
return CompileResult.fail(std.fmt.allocPrint(allocator, "failed to rename {s} to {s}: {s}", .{ temp_location, outfile, @errorName(err) }) catch "failed to rename file");
}
};
return .success;
}
pub fn fromExecutable(allocator: std.mem.Allocator) !?StandaloneModuleGraph {
if (comptime Environment.isMac) {
const macho_bytes = Macho.getData() orelse return null;
if (macho_bytes.len < @sizeOf(Offsets) + trailer.len) {
Output.debugWarn("bun standalone module graph is too small to be valid", .{});
return null;
}
const macho_bytes_slice = macho_bytes[macho_bytes.len - @sizeOf(Offsets) - trailer.len ..];
const trailer_bytes = macho_bytes[macho_bytes.len - trailer.len ..][0..trailer.len];
if (!bun.strings.eqlComptime(trailer_bytes, trailer)) {
Output.debugWarn("bun standalone module graph has invalid trailer", .{});
return null;
}
const offsets = std.mem.bytesAsValue(Offsets, macho_bytes_slice).*;
return try StandaloneModuleGraph.fromBytes(allocator, @constCast(macho_bytes), offsets);
}
if (comptime Environment.isWindows) {
const pe_bytes = PE.getData() orelse return null;
if (pe_bytes.len < @sizeOf(Offsets) + trailer.len) {
Output.debugWarn("bun standalone module graph is too small to be valid", .{});
return null;
}
const pe_bytes_slice = pe_bytes[pe_bytes.len - @sizeOf(Offsets) - trailer.len ..];
const trailer_bytes = pe_bytes[pe_bytes.len - trailer.len ..][0..trailer.len];
if (!bun.strings.eqlComptime(trailer_bytes, trailer)) {
Output.debugWarn("bun standalone module graph has invalid trailer", .{});
return null;
}
const offsets = std.mem.bytesAsValue(Offsets, pe_bytes_slice).*;
return try StandaloneModuleGraph.fromBytes(allocator, @constCast(pe_bytes), offsets);
}
// Do not invoke libuv here.
const self_exe = openSelf() catch return null;
defer self_exe.close();
var trailer_bytes: [4096]u8 = undefined;
std.posix.lseek_END(self_exe.cast(), -4096) catch return null;
var read_amount: usize = 0;
while (read_amount < trailer_bytes.len) {
switch (Syscall.read(self_exe, trailer_bytes[read_amount..])) {
.result => |read| {
if (read == 0) return null;
read_amount += read;
},
.err => {
return null;
},
}
}
if (read_amount < trailer.len + @sizeOf(usize) + 32)
// definitely missing data
return null;
var end = @as([]u8, &trailer_bytes).ptr + read_amount - @sizeOf(usize);
const total_byte_count: usize = @as(usize, @bitCast(end[0..8].*));
if (total_byte_count > std.math.maxInt(u32) or total_byte_count < 4096) {
// sanity check: the total byte count should never be more than 4 GB
// bun is at least like 30 MB so if it reports a size less than 4096 bytes then something is wrong
return null;
}
end -= trailer.len;
if (!bun.strings.hasPrefixComptime(end[0..trailer.len], trailer)) {
// invalid trailer
return null;
}
end -= @sizeOf(Offsets);
const offsets: Offsets = std.mem.bytesAsValue(Offsets, end[0..@sizeOf(Offsets)]).*;
if (offsets.byte_count >= total_byte_count) {
// if we hit this branch then the file is corrupted and we should just give up
return null;
}
var to_read = try bun.default_allocator.alloc(u8, offsets.byte_count);
var to_read_from = to_read;
// Reading the data and making sure it's page-aligned + won't crash due
// to out of bounds using mmap() is very complicated.
// we just read the whole thing into memory for now.
// at the very least
// if you have not a ton of code, we only do a single read() call
if (Environment.allow_assert or offsets.byte_count > 1024 * 3) {
const offset_from_end = trailer_bytes.len - (@intFromPtr(end) - @intFromPtr(@as([]u8, &trailer_bytes).ptr));
std.posix.lseek_END(self_exe.cast(), -@as(i64, @intCast(offset_from_end + offsets.byte_count))) catch return null;
if (comptime Environment.allow_assert) {
// actually we just want to verify this logic is correct in development
if (offsets.byte_count <= 1024 * 3) {
to_read_from = try bun.default_allocator.alloc(u8, offsets.byte_count);
}
}
var remain = to_read_from;
while (remain.len > 0) {
switch (Syscall.read(self_exe, remain)) {
.result => |read| {
if (read == 0) return null;
remain = remain[read..];
},
.err => {
bun.default_allocator.free(to_read);
return null;
},
}
}
}
if (offsets.byte_count <= 1024 * 3) {
// we already have the bytes
end -= offsets.byte_count;
@memcpy(to_read[0..offsets.byte_count], end[0..offsets.byte_count]);
if (comptime Environment.allow_assert) {
bun.assert(bun.strings.eqlLong(to_read, end[0..offsets.byte_count], true));
}
}
return try StandaloneModuleGraph.fromBytes(allocator, to_read, offsets);
}
/// heuristic: `bun build --compile` won't be supported if the name is "bun", "bunx", or "node".
/// this is a cheap way to avoid the extra overhead of opening the executable, and also just makes sense.
fn isBuiltInExe(comptime T: type, argv0: []const T) bool {
if (argv0.len == 0) return false;
if (argv0.len == 3) {
if (bun.strings.eqlComptimeCheckLenWithType(T, argv0, bun.strings.literal(T, "bun"), false)) {
return true;
}
}
if (argv0.len == 4) {
if (bun.strings.eqlComptimeCheckLenWithType(T, argv0, bun.strings.literal(T, "bunx"), false)) {
return true;
}
if (bun.strings.eqlComptimeCheckLenWithType(T, argv0, bun.strings.literal(T, "node"), false)) {
return true;
}
}
if (comptime Environment.isDebug) {
if (bun.strings.eqlComptimeCheckLenWithType(T, argv0, bun.strings.literal(T, "bun-debug"), true)) {
return true;
}
if (bun.strings.eqlComptimeCheckLenWithType(T, argv0, bun.strings.literal(T, "bun-debugx"), true)) {
return true;
}
}
return false;
}
fn openSelf() std.fs.OpenSelfExeError!bun.FileDescriptor {
if (!Environment.isWindows) {
const argv = bun.argv;
if (argv.len > 0) {
if (isBuiltInExe(u8, argv[0])) {
return error.FileNotFound;
}
}
}
switch (Environment.os) {
.linux => {
if (std.fs.openFileAbsoluteZ("/proc/self/exe", .{})) |easymode| {
return .fromStdFile(easymode);
} else |_| {
if (bun.argv.len > 0) {
// The user doesn't have /proc/ mounted, so now we just guess and hope for the best.
var whichbuf: bun.PathBuffer = undefined;
if (bun.which(
&whichbuf,
bun.getenvZ("PATH") orelse return error.FileNotFound,
"",
bun.argv[0],
)) |path| {
return .fromStdFile(try std.fs.cwd().openFileZ(path, .{}));
}
}
return error.FileNotFound;
}
},
.mac => {
// Use of MAX_PATH_BYTES here is valid as the resulting path is immediately
// opened with no modification.
const self_exe_path = try bun.selfExePath();
const file = try std.fs.openFileAbsoluteZ(self_exe_path.ptr, .{});
return .fromStdFile(file);
},
.windows => {
const image_path_unicode_string = std.os.windows.peb().ProcessParameters.ImagePathName;
const image_path = image_path_unicode_string.Buffer.?[0 .. image_path_unicode_string.Length / 2];
var nt_path_buf: bun.WPathBuffer = undefined;
const nt_path = bun.strings.addNTPathPrefixIfNeeded(&nt_path_buf, image_path);
const basename_start = std.mem.lastIndexOfScalar(u16, nt_path, '\\') orelse
return error.FileNotFound;
const basename = nt_path[basename_start + 1 .. nt_path.len - ".exe".len];
if (isBuiltInExe(u16, basename)) {
return error.FileNotFound;
}
return bun.sys.openFileAtWindows(
.cwd(),
nt_path,
.{
.access_mask = w.SYNCHRONIZE | w.GENERIC_READ,
.disposition = w.FILE_OPEN,
.options = w.FILE_SYNCHRONOUS_IO_NONALERT | w.FILE_OPEN_REPARSE_POINT,
},
).unwrap() catch {
return error.FileNotFound;
};
},
else => @compileError("TODO"),
}
}
/// Source map serialization in the bundler is specially designed to be
/// loaded in memory as is. Source contents are compressed with ZSTD to
/// reduce the file size, and mappings are stored as uncompressed VLQ.
pub const SerializedSourceMap = struct {
bytes: []const u8,
/// Following the header bytes:
/// - source_files_count number of StringPointer, file names
/// - source_files_count number of StringPointer, zstd compressed contents
/// - the mapping data, `map_vlq_length` bytes
/// - all the StringPointer contents
pub const Header = extern struct {
source_files_count: u32,
map_bytes_length: u32,
};
pub fn header(map: SerializedSourceMap) *align(1) const Header {
return @ptrCast(map.bytes.ptr);
}
pub fn mappingVLQ(map: SerializedSourceMap) []const u8 {
const head = map.header();
const start = @sizeOf(Header) + head.source_files_count * @sizeOf(StringPointer) * 2;
return map.bytes[start..][0..head.map_bytes_length];
}
pub fn sourceFileNames(map: SerializedSourceMap) []align(1) const StringPointer {
const head = map.header();
return @as([*]align(1) const StringPointer, @ptrCast(map.bytes[@sizeOf(Header)..]))[0..head.source_files_count];
}
fn compressedSourceFiles(map: SerializedSourceMap) []align(1) const StringPointer {
const head = map.header();
return @as([*]align(1) const StringPointer, @ptrCast(map.bytes[@sizeOf(Header)..]))[head.source_files_count..][0..head.source_files_count];
}
/// Once loaded, this map stores additional data for keeping track of source code.
pub const Loaded = struct {
map: SerializedSourceMap,
/// Only decompress source code once! Once a file is decompressed,
/// it is stored here. Decompression failures are stored as an empty
/// string, which will be treated as "no contents".
decompressed_files: []?[]u8,
pub fn sourceFileContents(this: Loaded, index: usize) ?[]const u8 {
if (this.decompressed_files[index]) |decompressed| {
return if (decompressed.len == 0) null else decompressed;
}
const compressed_codes = this.map.compressedSourceFiles();
const compressed_file = compressed_codes[@intCast(index)].slice(this.map.bytes);
const size = bun.zstd.getDecompressedSize(compressed_file);
const bytes = bun.handleOom(bun.default_allocator.alloc(u8, size));
const result = bun.zstd.decompress(bytes, compressed_file);
if (result == .err) {
bun.Output.warn("Source map decompression error: {s}", .{result.err});
bun.default_allocator.free(bytes);
this.decompressed_files[index] = "";
return null;
}
const data = bytes[0..result.success];
this.decompressed_files[index] = data;
return data;
}
};
};
pub fn serializeJsonSourceMapForStandalone(
header_list: *std.ArrayList(u8),
string_payload: *std.ArrayList(u8),
arena: std.mem.Allocator,
json_source: []const u8,
) !void {
const out = header_list.writer();
const json_src = bun.logger.Source.initPathString("sourcemap.json", json_source);
var log = bun.logger.Log.init(arena);
defer log.deinit();
// the allocator given to the JS parser is not respected for all parts
// of the parse, so we need to remember to reset the ast store
bun.ast.Expr.Data.Store.reset();
bun.ast.Stmt.Data.Store.reset();
defer {
bun.ast.Expr.Data.Store.reset();
bun.ast.Stmt.Data.Store.reset();
}
var json = bun.json.parse(&json_src, &log, arena, false) catch
return error.InvalidSourceMap;
const mappings_str = json.get("mappings") orelse
return error.InvalidSourceMap;
if (mappings_str.data != .e_string)
return error.InvalidSourceMap;
const sources_content = switch ((json.get("sourcesContent") orelse return error.InvalidSourceMap).data) {
.e_array => |arr| arr,
else => return error.InvalidSourceMap,
};
const sources_paths = switch ((json.get("sources") orelse return error.InvalidSourceMap).data) {
.e_array => |arr| arr,
else => return error.InvalidSourceMap,
};
if (sources_content.items.len != sources_paths.items.len) {
return error.InvalidSourceMap;
}
const map_vlq: []const u8 = mappings_str.data.e_string.slice(arena);
try out.writeInt(u32, sources_paths.items.len, .little);
try out.writeInt(u32, @intCast(map_vlq.len), .little);
const string_payload_start_location = @sizeOf(u32) +
@sizeOf(u32) +
@sizeOf(bun.StringPointer) * sources_content.items.len * 2 + // path + source
map_vlq.len;
for (sources_paths.items.slice()) |item| {
if (item.data != .e_string)
return error.InvalidSourceMap;
const decoded = try item.data.e_string.stringCloned(arena);
const offset = string_payload.items.len;
try string_payload.appendSlice(decoded);
const slice = bun.StringPointer{
.offset = @intCast(offset + string_payload_start_location),
.length = @intCast(string_payload.items.len - offset),
};
try out.writeInt(u32, slice.offset, .little);
try out.writeInt(u32, slice.length, .little);
}
for (sources_content.items.slice()) |item| {
if (item.data != .e_string)
return error.InvalidSourceMap;
const utf8 = try item.data.e_string.stringCloned(arena);
defer arena.free(utf8);
const offset = string_payload.items.len;
const bound = bun.zstd.compressBound(utf8.len);
try string_payload.ensureUnusedCapacity(bound);
const unused = string_payload.unusedCapacitySlice();
const compressed_result = bun.zstd.compress(unused, utf8, 1);
if (compressed_result == .err) {
bun.Output.panic("Unexpected error compressing sourcemap: {s}", .{bun.span(compressed_result.err)});
}
string_payload.items.len += compressed_result.success;
const slice = bun.StringPointer{
.offset = @intCast(offset + string_payload_start_location),
.length = @intCast(string_payload.items.len - offset),
};
try out.writeInt(u32, slice.offset, .little);
try out.writeInt(u32, slice.length, .little);
}
try out.writeAll(map_vlq);
bun.assert(header_list.items.len == string_payload_start_location);
}
};
const std = @import("std");
const w = std.os.windows;
const bun = @import("bun");
const Environment = bun.Environment;
const Output = bun.Output;
const SourceMap = bun.sourcemap;
const StringPointer = bun.StringPointer;
const Syscall = bun.sys;
const macho = bun.macho;
const pe = bun.pe;
const strings = bun.strings;
const Schema = bun.schema.api;