Matrix/vector refactor (#426)

This commit is contained in:
Christian Semmler
2024-01-12 19:34:38 -05:00
committed by GitHub
parent eac096036a
commit d24f5db42f
41 changed files with 865 additions and 1365 deletions

View File

@@ -1,180 +1,5 @@
#include "matrix.h"
#include "decomp.h"
#include "math.h"
#include <memory.h>
DECOMP_SIZE_ASSERT(Matrix4, 0x40);
DECOMP_SIZE_ASSERT(Matrix4Impl, 0x8);
DECOMP_SIZE_ASSERT(Matrix4Data, 0x48);
// FUNCTION: LEGO1 0x10002320
void Matrix4Impl::EqualsMatrixData(const Matrix4& p_matrix)
{
*m_data = p_matrix;
}
// FUNCTION: LEGO1 0x10002340
void Matrix4Impl::EqualsMatrixImpl(const Matrix4Impl* p_other)
{
*m_data = *p_other->m_data;
}
// FUNCTION: LEGO1 0x10002360
void Matrix4Impl::AnotherSetData(Matrix4& p_data)
{
m_data = &p_data;
}
// FUNCTION: LEGO1 0x10002380
const Matrix4* Matrix4Impl::GetData() const
{
return m_data;
}
// FUNCTION: LEGO1 0x10002390
Matrix4* Matrix4Impl::GetData()
{
return m_data;
}
// FUNCTION: LEGO1 0x100023a0
const float* Matrix4Impl::Element(int p_row, int p_col) const
{
return &(*m_data)[p_row][p_col];
}
// FUNCTION: LEGO1 0x100023c0
float* Matrix4Impl::Element(int p_row, int p_col)
{
return &(*m_data)[p_row][p_col];
}
// FUNCTION: LEGO1 0x100023e0
void Matrix4Impl::Clear()
{
memset(m_data, 0, 16 * sizeof(float));
}
// FUNCTION: LEGO1 0x100023f0
void Matrix4Impl::SetIdentity()
{
Clear();
(*m_data)[0][0] = 1.0f;
(*m_data)[1][1] = 1.0f;
(*m_data)[2][2] = 1.0f;
(*m_data)[3][3] = 1.0f;
}
// FUNCTION: LEGO1 0x10002430
Matrix4Impl* Matrix4Impl::operator+=(const Matrix4& p_matrix)
{
for (int i = 0; i < 16; ++i)
((float*) m_data)[i] += ((float*) &p_matrix)[i];
return this;
}
// Matches but instructions are significantly out of order. Probably not wrong
// code given that the very similar SetTranslation does match.
// FUNCTION: LEGO1 0x10002460
void Matrix4Impl::TranslateBy(const float* p_x, const float* p_y, const float* p_z)
{
((float*) m_data)[12] += *p_x;
((float*) m_data)[13] += *p_y;
((float*) m_data)[14] += *p_z;
}
// FUNCTION: LEGO1 0x100024a0
void Matrix4Impl::SetTranslation(const float* p_x, const float* p_y, const float* p_z)
{
(*m_data)[3][0] = *p_x;
(*m_data)[3][1] = *p_y;
(*m_data)[3][2] = *p_z;
}
// FUNCTION: LEGO1 0x100024d0
void Matrix4Impl::EqualsDataProduct(const Matrix4& p_a, const Matrix4& p_b)
{
float* cur = (float*) m_data;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
*cur = 0.0f;
for (int k = 0; k < 4; ++k) {
*cur += p_a[row][k] * p_b[k][col];
}
cur++;
}
}
}
// FUNCTION: LEGO1 0x10002530
void Matrix4Impl::EqualsMxProduct(const Matrix4Impl* p_a, const Matrix4Impl* p_b)
{
EqualsDataProduct(*p_a->m_data, *p_b->m_data);
}
// Not close, Ghidra struggles understinging this method so it will have to
// be manually worked out. Included since I at least figured out what it was
// doing with rotateIndex and what overall operation it's trying to do.
// STUB: LEGO1 0x10002550
void Matrix4Impl::ToQuaternion(Vector4Impl* p_outQuat)
{
/*
float trace = m_data[0] + m_data[5] + m_data[10];
if (trace > 0) {
trace = sqrt(trace + 1.0);
p_outQuat->GetData()[3] = trace * 0.5f;
p_outQuat->GetData()[0] = (m_data[9] - m_data[6]) * trace;
p_outQuat->GetData()[1] = (m_data[2] - m_data[8]) * trace;
p_outQuat->GetData()[2] = (m_data[4] - m_data[1]) * trace;
return;
}
// ~GLOBAL: LEGO1 0x100d4090
static int rotateIndex[] = {1, 2, 0};
// Largest element along the trace
int largest = m_data[0] < m_data[5];
if (*Element(largest, largest) < m_data[10])
largest = 2;
int next = rotateIndex[largest];
int nextNext = rotateIndex[next];
float valueA = *Element(nextNext, nextNext);
float valueB = *Element(next, next);
float valueC = *Element(largest, largest);
// Above is somewhat decomped, below is pure speculation since the automatic
// decomp becomes very garbled.
float traceValue = sqrt(valueA - valueB - valueC + 1.0);
p_outQuat->GetData()[largest] = traceValue * 0.5f;
traceValue = 0.5f / traceValue;
p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue;
p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue;
p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue;
*/
}
// No idea what this function is doing and it will be hard to tell until
// we have a confirmed usage site.
// STUB: LEGO1 0x10002710
int Matrix4Impl::FromQuaternion(const Vector4Impl& p_vec)
{
return -1;
}
// FUNCTION: LEGO1 0x10002850
void Matrix4Impl::operator=(const Matrix4Impl& p_other)
{
EqualsMatrixImpl(&p_other);
}
// FUNCTION: LEGO1 0x10002860
void Matrix4Data::operator=(const Matrix4Data& p_other)
{
EqualsMatrixImpl(&p_other);
}
DECOMP_SIZE_ASSERT(Matrix4, 0x8);

View File

@@ -3,90 +3,166 @@
#include "vector.h"
/*
* A simple array of four Vector4s that can be indexed into.
*/
class Matrix4 {
public:
float rows[4][4]; // storage is public for easy access
#include <memory.h>
inline Matrix4() {}
/*
Matrix4(const Vector4& x_axis, const Vector4& y_axis, const Vector4& z_axis, const Vector4& position)
{
rows[0] = x_axis;
rows[1] = y_axis;
rows[2] = z_axis;
rows[3] = position;
}
Matrix4(const float m[4][4])
{
rows[0] = m[0];
rows[1] = m[1];
rows[2] = m[2];
rows[3] = m[3];
}
*/
const float* operator[](long i) const { return rows[i]; }
float* operator[](long i) { return rows[i]; }
struct UnknownMatrixType {
float m_data[4][4];
};
// VTABLE: LEGO1 0x100d4350
// SIZE 0x8
class Matrix4Impl {
class Matrix4 {
public:
inline Matrix4Impl(Matrix4& p_data) { SetData(p_data); }
inline Matrix4(float (*p_data)[4]) { SetData(p_data); }
// Note: virtual function overloads appear in the virtual table
// in reverse order of appearance.
// FUNCTION: LEGO1 0x10002320
virtual void Equals(float (*p_data)[4]) { memcpy(m_data, p_data, sizeof(float) * 4 * 4); } // vtable+0x04
// FUNCTION: LEGO1 0x10002340
virtual void Equals(const Matrix4& p_matrix)
{
memcpy(m_data, p_matrix.m_data, sizeof(float) * 4 * 4);
}; // vtable+0x00
// FUNCTION: LEGO1 0x10002360
virtual void SetData(float (*p_data)[4]) { m_data = p_data; } // vtable+0x0c
// vtable + 0x00
virtual void EqualsMatrixImpl(const Matrix4Impl* p_other);
virtual void EqualsMatrixData(const Matrix4& p_matrix);
// FUNCTION: LEGO1 0x10002370
virtual void SetData(Matrix4& p_data) { m_data = &p_data; }
virtual void AnotherSetData(Matrix4& p_data);
virtual void SetData(UnknownMatrixType& p_matrix) { m_data = p_matrix.m_data; }; // vtable+0x08
// vtable + 0x10
virtual Matrix4* GetData();
virtual const Matrix4* GetData() const;
virtual float* Element(int p_row, int p_col);
virtual const float* Element(int p_row, int p_col) const;
// FUNCTION: LEGO1 0x10002380
virtual float (*GetData())[4] { return m_data; }; // vtable+0x14
// vtable + 0x20
virtual void Clear();
virtual void SetIdentity();
virtual void operator=(const Matrix4Impl& p_other);
virtual Matrix4Impl* operator+=(const Matrix4& p_matrix);
// FUNCTION: LEGO1 0x10002390
virtual float (*GetData() const)[4] { return m_data; }; // vtable+0x10
// vtable + 0x30
virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z);
virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z);
virtual void EqualsMxProduct(const Matrix4Impl* p_a, const Matrix4Impl* p_b);
virtual void EqualsDataProduct(const Matrix4& p_a, const Matrix4& p_b);
// FUNCTION: LEGO1 0x100023a0
virtual float* Element(int p_row, int p_col) { return &m_data[p_row][p_col]; } // vtable+0x1c
// vtable + 0x40
virtual void ToQuaternion(Vector4Impl* p_resultQuat);
virtual int FromQuaternion(const Vector4Impl& p_vec);
// FUNCTION: LEGO1 0x100023c0
virtual const float* Element(int p_row, int p_col) const { return &m_data[p_row][p_col]; }; // vtable+0x18
inline float& operator[](size_t idx) { return ((float*) m_data)[idx]; }
// FUNCTION: LEGO1 0x100023e0
virtual void Clear() { memset(m_data, 0, 16 * sizeof(float)); }; // vtable+0x20
// FUNCTION: LEGO1 0x100023f0
virtual void SetIdentity()
{
Clear();
m_data[0][0] = 1.0f;
m_data[1][1] = 1.0f;
m_data[2][2] = 1.0f;
m_data[3][3] = 1.0f;
} // vtable+0x24
// FUNCTION: LEGO1 0x10002850
virtual void operator=(const Matrix4& p_matrix) { Equals(p_matrix); } // vtable+0x28
// FUNCTION: LEGO1 0x10002430
virtual Matrix4& operator+=(float (*p_data)[4])
{
for (int i = 0; i < 16; i++)
((float*) m_data)[i] += ((float*) p_data)[i];
return *this;
} // vtable+0x2c
// FUNCTION: LEGO1 0x10002460
virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z)
{
m_data[3][0] += *p_x;
m_data[3][1] += *p_y;
m_data[3][2] += *p_z;
} // vtable+0x30
// FUNCTION: LEGO1 0x100024a0
virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z)
{
m_data[3][0] = *p_x;
m_data[3][1] = *p_y;
m_data[3][2] = *p_z;
} // vtable+0x34
// FUNCTION: LEGO1 0x100024d0
virtual void Product(float (*p_a)[4], float (*p_b)[4])
{
float* cur = (float*) m_data;
for (int row = 0; row < 4; row++) {
for (int col = 0; col < 4; col++) {
*cur = 0.0f;
for (int k = 0; k < 4; k++) {
*cur += p_a[row][k] * p_b[k][col];
}
cur++;
}
}
}; // vtable+0x3c
// FUNCTION: LEGO1 0x10002530
virtual void Product(const Matrix4& p_a, const Matrix4& p_b) { Product(p_a.m_data, p_b.m_data); } // vtable+0x38
inline virtual void ToQuaternion(Vector4& p_resultQuat); // vtable+0x40
inline virtual int FromQuaternion(const Vector4& p_vec); // vtable+0x44
float* operator[](size_t idx) { return m_data[idx]; }
const float* operator[](size_t idx) const { return m_data[idx]; }
protected:
// TODO: Currently unclear whether this class contains a Matrix4* or float*.
Matrix4* m_data;
float (*m_data)[4];
};
// VTABLE: LEGO1 0x100d4300
// SIZE 0x48
class Matrix4Data : public Matrix4Impl {
public:
inline Matrix4Data() : Matrix4Impl(m_matrix) {}
inline Matrix4Data(Matrix4Data& p_other) : Matrix4Impl(m_matrix) { m_matrix = *p_other.m_data; }
inline Matrix4& GetMatrix() { return *m_data; }
// Not close, Ghidra struggles understinging this method so it will have to
// be manually worked out. Included since I at least figured out what it was
// doing with rotateIndex and what overall operation it's trying to do.
// STUB: LEGO1 0x10002550
inline void Matrix4::ToQuaternion(Vector4& p_outQuat)
{
/*
float trace = m_data[0] + m_data[5] + m_data[10];
if (trace > 0) {
trace = sqrt(trace + 1.0);
p_outQuat->GetData()[3] = trace * 0.5f;
p_outQuat->GetData()[0] = (m_data[9] - m_data[6]) * trace;
p_outQuat->GetData()[1] = (m_data[2] - m_data[8]) * trace;
p_outQuat->GetData()[2] = (m_data[4] - m_data[1]) * trace;
return;
}
// No idea why there's another equals. Maybe to some other type like the
// DirectX Retained Mode Matrix type which is also a float* alias?
// vtable + 0x44
virtual void operator=(const Matrix4Data& p_other);
// ~GLOBAL: LEGO1 0x100d4090
static int rotateIndex[] = {1, 2, 0};
Matrix4 m_matrix;
};
// Largest element along the trace
int largest = m_data[0] < m_data[5];
if (*Element(largest, largest) < m_data[10])
largest = 2;
int next = rotateIndex[largest];
int nextNext = rotateIndex[next];
float valueA = *Element(nextNext, nextNext);
float valueB = *Element(next, next);
float valueC = *Element(largest, largest);
// Above is somewhat decomped, below is pure speculation since the automatic
// decomp becomes very garbled.
float traceValue = sqrt(valueA - valueB - valueC + 1.0);
p_outQuat->GetData()[largest] = traceValue * 0.5f;
traceValue = 0.5f / traceValue;
p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue;
p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue;
p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue;
*/
}
// No idea what this function is doing and it will be hard to tell until
// we have a confirmed usage site.
// STUB: LEGO1 0x10002710
inline int Matrix4::FromQuaternion(const Vector4& p_vec)
{
return -1;
}
#endif // MATRIX_H

View File

@@ -2,8 +2,24 @@
#include "decomp.h"
#include <vec.h>
DECOMP_SIZE_ASSERT(OrientableROI, 0xdc)
// FUNCTION: LEGO1 0x100a4420
OrientableROI::OrientableROI()
{
FILLVEC3(m_world_bounding_box.Min(), 888888.8);
FILLVEC3(m_world_bounding_box.Max(), -888888.8);
ZEROVEC3(m_world_bounding_sphere.Center());
m_world_bounding_sphere.Radius() = 0.0;
ZEROVEC3(m_world_velocity);
IDENTMAT4(m_local2world);
m_unk0xd4 = 0;
m_unk0xd8 |= Flag_Bit1 | Flag_Bit2;
}
// FUNCTION: LEGO1 0x100a5910
void OrientableROI::VTable0x1c()
{
@@ -12,27 +28,27 @@ void OrientableROI::VTable0x1c()
}
// FUNCTION: LEGO1 0x100a5930
void OrientableROI::SetLocalTransform(const Matrix4Impl& p_transform)
void OrientableROI::SetLocalTransform(const Matrix4& p_transform)
{
reinterpret_cast<Matrix4Impl&>(m_local2world) = p_transform;
reinterpret_cast<Matrix4&>(m_local2world) = p_transform;
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// FUNCTION: LEGO1 0x100a5960
void OrientableROI::VTable0x24(const Matrix4Data& p_transform)
void OrientableROI::VTable0x24(const MxMatrix& p_transform)
{
Matrix4Data l_matrix(m_local2world);
m_local2world.EqualsMxProduct(&p_transform, &l_matrix);
MxMatrix l_matrix(m_local2world);
m_local2world.Product(p_transform, l_matrix);
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// FUNCTION: LEGO1 0x100a59b0
void OrientableROI::UpdateWorldData(const Matrix4Data& p_transform)
void OrientableROI::UpdateWorldData(const MxMatrix& p_transform)
{
Matrix4Data l_matrix(m_local2world);
m_local2world.EqualsMxProduct(&l_matrix, &p_transform);
MxMatrix l_matrix(m_local2world);
m_local2world.Product(l_matrix, p_transform);
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
@@ -50,9 +66,9 @@ void OrientableROI::UpdateWorldVelocity()
}
// FUNCTION: LEGO1 0x100a5d80
const Vector3& OrientableROI::GetWorldVelocity() const
const float* OrientableROI::GetWorldVelocity() const
{
return (Vector3&) *m_world_velocity.GetData();
return m_world_velocity.GetData();
}
// FUNCTION: LEGO1 0x100a5d90

View File

@@ -1,47 +1,55 @@
#ifndef ORIENTABLEROI_H
#define ORIENTABLEROI_H
#include "matrix.h"
#include "decomp.h"
#include "mxgeometry/mxmatrix.h"
#include "roi.h"
// VTABLE: LEGO1 0x100dbc08
// SIZE 0xdc
class OrientableROI : public ROI {
public:
// FUNCTION: LEGO1 0x100a4420
OrientableROI()
{
FILLVEC3(m_world_bounding_box.Min(), 888888.8);
FILLVEC3(m_world_bounding_box.Max(), -888888.8);
ZEROVEC3(m_world_bounding_sphere.Center());
m_world_bounding_sphere.Radius() = 0.0;
ZEROVEC3(m_world_velocity);
IDENTMAT4(m_local2world.GetMatrix());
}
enum {
Flag_Bit1 = 0x01,
Flag_Bit2 = 0x02
};
virtual const Vector3& GetWorldVelocity() const override; // vtable+0x8
OrientableROI();
virtual const float* GetWorldVelocity() const override; // vtable+0x8
virtual const BoundingBox& GetWorldBoundingBox() const override; // vtable+0xc
virtual const BoundingSphere& GetWorldBoundingSphere() const override; // vtable+0x10
// FUNCTION: LEGO1 0x100a5db0
virtual void VTable0x14() { VTable0x1c(); } // vtable+0x14
virtual void UpdateWorldBoundingVolumes() = 0; // vtable+0x18
virtual void VTable0x1c(); // vtable+0x1c
virtual void SetLocalTransform(const Matrix4Impl& p_transform); // vtable+0x20
virtual void VTable0x24(const Matrix4Data& p_transform); // vtable+0x24
virtual void UpdateWorldData(const Matrix4Data& p_transform); // vtable+0x28
virtual void UpdateWorldVelocity(); // vtable+0x2c
virtual void VTable0x14() { VTable0x1c(); } // vtable+0x14
virtual void UpdateWorldBoundingVolumes() = 0; // vtable+0x18
virtual void VTable0x1c(); // vtable+0x1c
virtual void SetLocalTransform(const Matrix4& p_transform); // vtable+0x20
virtual void VTable0x24(const MxMatrix& p_transform); // vtable+0x24
virtual void UpdateWorldData(const MxMatrix& p_transform); // vtable+0x28
virtual void UpdateWorldVelocity(); // vtable+0x2c
const float* GetWorldPosition() const { return m_local2world[3]; }
const float* GetWorldDirection() const { return m_local2world[2]; }
const float* GetWorldUp() const { return m_local2world[1]; }
// SYNTHETIC: LEGO1 0x100a4630
// OrientableROI::`scalar deleting destructor'
protected:
char m_unk0xc; // 0xc
Matrix4Data m_local2world; // 0x10
BoundingBox m_world_bounding_box; // 0x58
MxMatrix m_local2world; // 0x10
BoundingBox m_world_bounding_box; // 0x58
// Unclear whether the following vectors are:
// 1) Part of m_world_bounding_box;
// 2) A second BoundingBox;
// 3) Standalone vectors
Mx3DPointFloat m_unk0x80; // 0x80
Mx3DPointFloat m_unk0x94; // 0x94
BoundingSphere m_world_bounding_sphere; // 0xa8
Vector3Data m_world_velocity; // 0xc0
unsigned int m_unk0xd4; // 0xd4
unsigned int m_unk0xd8; // 0xd8
Mx3DPointFloat m_world_velocity; // 0xc0
undefined4 m_unk0xd4; // 0xd4
undefined4 m_unk0xd8; // 0xd8
};
#endif // ORIENTABLEROI_H

View File

@@ -1,45 +1,20 @@
#include "realtime.h"
#include <vec.h>
// FUNCTION: LEGO1 0x100a5b40
void CalcLocalTransform(
const Vector3Impl& p_posVec,
const Vector3Impl& p_dirVec,
const Vector3Impl& p_upVec,
Matrix4Impl& p_outMatrix
)
void CalcLocalTransform(const Vector3& p_posVec, const Vector3& p_dirVec, const Vector3& p_upVec, Matrix4& p_outMatrix)
{
float x_axis[3], y_axis[3], z_axis[3];
// This is an unrolled version of the "NORMVEC3" macro,
// used here to apply a silly hack to get a 100% match
{
const float dirVec1Operation = (p_dirVec)[1] * (p_dirVec)[1];
double len = sqrt(((p_dirVec)[0] * (p_dirVec)[0] + dirVec1Operation + (p_dirVec)[2] * (p_dirVec)[2]));
((z_axis)[0] = (p_dirVec)[0] / (len), (z_axis)[1] = (p_dirVec)[1] / (len), (z_axis)[2] = (p_dirVec)[2] / (len));
}
NORMVEC3(z_axis, p_dirVec);
NORMVEC3(y_axis, p_upVec)
VXV3(x_axis, y_axis, z_axis);
// Exact same thing as pointed out by the above comment
{
const float axis2Operation = (x_axis)[2] * (x_axis)[2];
double len = sqrt(((x_axis)[0] * (x_axis)[0] + axis2Operation + (x_axis)[1] * (x_axis)[1]));
((x_axis)[0] = (x_axis)[0] / (len), (x_axis)[1] = (x_axis)[1] / (len), (x_axis)[2] = (x_axis)[2] / (len));
}
NORMVEC3(x_axis, x_axis);
VXV3(y_axis, z_axis, x_axis);
// Again, the same thing
{
const float axis2Operation = (y_axis)[2] * (y_axis)[2];
double len = sqrt(((y_axis)[0] * (y_axis)[0] + axis2Operation + (y_axis)[1] * (y_axis)[1]));
((y_axis)[0] = (y_axis)[0] / (len), (y_axis)[1] = (y_axis)[1] / (len), (y_axis)[2] = (y_axis)[2] / (len));
}
SET4from3(&p_outMatrix[0], x_axis, 0);
SET4from3(&p_outMatrix[4], y_axis, 0);
SET4from3(&p_outMatrix[8], z_axis, 0);
SET4from3(&p_outMatrix[12], p_posVec, 1);
NORMVEC3(y_axis, y_axis);
SET4from3(p_outMatrix[0], x_axis, 0);
SET4from3(p_outMatrix[1], y_axis, 0);
SET4from3(p_outMatrix[2], z_axis, 0);
SET4from3(p_outMatrix[3], p_posVec, 1);
}

View File

@@ -9,11 +9,6 @@
VDS3(dst, src, len); \
}
void CalcLocalTransform(
const Vector3Impl& p_posVec,
const Vector3Impl& p_dirVec,
const Vector3Impl& p_upVec,
Matrix4Impl& p_outMatrix
);
void CalcLocalTransform(const Vector3& p_posVec, const Vector3& p_dirVec, const Vector3& p_upVec, Matrix4& p_outMatrix);
#endif // REALTIME_H

View File

@@ -5,39 +5,39 @@
#include "compat.h"
#include "lodlist.h"
#include "mxgeometry/mxgeometry3d.h"
#include "mxstl/stlcompat.h"
#include "realtime/realtime.h"
#include "vector.h"
/*
* A simple bounding box object with Min and Max accessor methods.
*/
// SIZE 0x28
class BoundingBox {
public:
const Vector3Data& Min() const { return min; }
Vector3Data& Min() { return min; }
const Vector3Data& Max() const { return max; }
Vector3Data& Max() { return max; }
const Mx3DPointFloat& Min() const { return min; }
Mx3DPointFloat& Min() { return min; }
const Mx3DPointFloat& Max() const { return max; }
Mx3DPointFloat& Max() { return max; }
private:
Vector3Data min;
Vector3Data max;
Vector3Data m_unk0x28;
Vector3Data m_unk0x3c;
Mx3DPointFloat min;
Mx3DPointFloat max;
};
/*
* A simple bounding sphere object with center and radius accessor methods.
*/
// SIZE 0x18
class BoundingSphere {
public:
const Vector3Data& Center() const { return center; }
Vector3Data& Center() { return center; }
const Mx3DPointFloat& Center() const { return center; }
Mx3DPointFloat& Center() { return center; }
const float& Radius() const { return radius; }
float& Radius() { return radius; }
private:
Vector3Data center;
Mx3DPointFloat center;
float radius;
};
@@ -74,13 +74,14 @@ typedef vector<const ROI*> ROIList;
typedef vector<int> IntList;
// VTABLE: LEGO1 0x100dbc38
// SIZE 0xc
// SIZE 0x10
class ROI {
public:
ROI()
{
m_comp = 0;
m_lods = 0;
m_unk0xc = 1;
}
virtual ~ROI()
{
@@ -89,7 +90,7 @@ public:
assert(!m_lods);
}
virtual float IntrinsicImportance() const = 0; // vtable+0x4
virtual const Vector3& GetWorldVelocity() const = 0; // vtable+0x8
virtual const float* GetWorldVelocity() const = 0; // vtable+0x8
virtual const BoundingBox& GetWorldBoundingBox() const = 0; // vtable+0xc
virtual const BoundingSphere& GetWorldBoundingSphere() const = 0; // vtable+0x10
@@ -105,5 +106,6 @@ public:
protected:
CompoundObject* m_comp; // 0x4
LODListBase* m_lods; // 0x8
undefined m_unk0xc; // 0xc
};
#endif // ROI_H

View File

@@ -1,457 +1,7 @@
#include "vector.h"
#include "decomp.h"
#include <math.h>
#include <memory.h>
DECOMP_SIZE_ASSERT(Vector2Impl, 0x8);
DECOMP_SIZE_ASSERT(Vector3Impl, 0x8);
DECOMP_SIZE_ASSERT(Vector4Impl, 0x8);
DECOMP_SIZE_ASSERT(Vector3Data, 0x14);
DECOMP_SIZE_ASSERT(Vector4Data, 0x18);
// FUNCTION: LEGO1 0x10001f80
void Vector2Impl::AddVectorImpl(float* p_value)
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
}
// FUNCTION: LEGO1 0x10001fa0
void Vector2Impl::AddScalarImpl(float p_value)
{
m_data[0] += p_value;
m_data[1] += p_value;
}
// FUNCTION: LEGO1 0x10001fc0
void Vector2Impl::SubVectorImpl(float* p_value)
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
}
// FUNCTION: LEGO1 0x10001fe0
void Vector2Impl::MullVectorImpl(float* p_value)
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
}
// FUNCTION: LEGO1 0x10002000
void Vector2Impl::MullScalarImpl(float* p_value)
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
}
// FUNCTION: LEGO1 0x10002020
void Vector2Impl::DivScalarImpl(float* p_value)
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
}
// FUNCTION: LEGO1 0x10002040
float Vector2Impl::DotImpl(float* p_a, float* p_b) const
{
return p_b[0] * p_a[0] + p_b[1] * p_a[1];
}
// FUNCTION: LEGO1 0x10002070
void Vector2Impl::EqualsImpl(float* p_data)
{
float* vec = m_data;
vec[0] = p_data[0];
vec[1] = p_data[1];
}
// FUNCTION: LEGO1 0x10002090
float* Vector2Impl::GetData()
{
return m_data;
}
// FUNCTION: LEGO1 0x100020a0
const float* Vector2Impl::GetData() const
{
return m_data;
}
// FUNCTION: LEGO1 0x100020b0
void Vector2Impl::Clear()
{
float* vec = m_data;
vec[0] = 0.0f;
vec[1] = 0.0f;
}
// FUNCTION: LEGO1 0x100020d0
float Vector2Impl::Dot(float* p_a, float* p_b) const
{
return DotImpl(p_a, p_b);
}
// FUNCTION: LEGO1 0x100020f0
float Vector2Impl::Dot(Vector2Impl* p_a, Vector2Impl* p_b) const
{
return DotImpl(p_a->m_data, p_b->m_data);
}
// FUNCTION: LEGO1 0x10002110
float Vector2Impl::Dot(float* p_a, Vector2Impl* p_b) const
{
return DotImpl(p_a, p_b->m_data);
}
// FUNCTION: LEGO1 0x10002130
float Vector2Impl::Dot(Vector2Impl* p_a, float* p_b) const
{
return DotImpl(p_a->m_data, p_b);
}
// FUNCTION: LEGO1 0x10002150
float Vector2Impl::LenSquared() const
{
return m_data[0] * m_data[0] + m_data[1] * m_data[1];
}
// FUNCTION: LEGO1 0x10002160
int Vector2Impl::Unitize()
{
float sq = LenSquared();
if (sq > 0.0f) {
float root = sqrt(sq);
if (root > 0) {
DivScalarImpl(&root);
return 0;
}
}
return -1;
}
// FUNCTION: LEGO1 0x100021c0
void Vector2Impl::Add(float p_value)
{
AddScalarImpl(p_value);
}
// FUNCTION: LEGO1 0x100021d0
void Vector2Impl::Add(float* p_other)
{
AddVectorImpl(p_other);
}
// FUNCTION: LEGO1 0x100021e0
void Vector2Impl::Add(Vector2Impl* p_other)
{
AddVectorImpl(p_other->m_data);
}
// FUNCTION: LEGO1 0x100021f0
void Vector2Impl::Sub(float* p_other)
{
SubVectorImpl(p_other);
}
// FUNCTION: LEGO1 0x10002200
void Vector2Impl::Sub(Vector2Impl* p_other)
{
SubVectorImpl(p_other->m_data);
}
// FUNCTION: LEGO1 0x10002210
void Vector2Impl::Mul(float* p_other)
{
MullVectorImpl(p_other);
}
// FUNCTION: LEGO1 0x10002220
void Vector2Impl::Mul(Vector2Impl* p_other)
{
MullVectorImpl(p_other->m_data);
}
// FUNCTION: LEGO1 0x10002230
void Vector2Impl::Mul(float& p_value)
{
MullScalarImpl(&p_value);
}
// FUNCTION: LEGO1 0x10002240
void Vector2Impl::Div(float& p_value)
{
DivScalarImpl(&p_value);
}
// FUNCTION: LEGO1 0x10002250
void Vector2Impl::SetVector(float* p_other)
{
EqualsImpl(p_other);
}
// FUNCTION: LEGO1 0x10002260
void Vector2Impl::SetVector(Vector2Impl* p_other)
{
EqualsImpl(p_other->m_data);
}
// FUNCTION: LEGO1 0x10002270
void Vector3Impl::EqualsCrossImpl(float* p_a, float* p_b)
{
m_data[0] = p_a[1] * p_b[2] - p_a[2] * p_b[1];
m_data[1] = p_a[2] * p_b[0] - p_a[0] * p_b[2];
m_data[2] = p_a[0] * p_b[1] - p_a[1] * p_b[0];
}
// FUNCTION: LEGO1 0x100022c0
void Vector3Impl::EqualsCross(Vector3Impl* p_a, Vector3Impl* p_b)
{
EqualsCrossImpl(p_a->m_data, p_b->m_data);
}
// FUNCTION: LEGO1 0x100022e0
void Vector3Impl::EqualsCross(Vector3Impl* p_a, float* p_b)
{
EqualsCrossImpl(p_a->m_data, p_b);
}
// FUNCTION: LEGO1 0x10002300
void Vector3Impl::EqualsCross(float* p_a, Vector3Impl* p_b)
{
EqualsCrossImpl(p_a, p_b->m_data);
}
// FUNCTION: LEGO1 0x10002870
void Vector4Impl::AddVectorImpl(float* p_value)
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
m_data[2] += p_value[2];
m_data[3] += p_value[3];
}
// FUNCTION: LEGO1 0x100028b0
void Vector4Impl::AddScalarImpl(float p_value)
{
m_data[0] += p_value;
m_data[1] += p_value;
m_data[2] += p_value;
m_data[3] += p_value;
}
// FUNCTION: LEGO1 0x100028f0
void Vector4Impl::SubVectorImpl(float* p_value)
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
m_data[2] -= p_value[2];
m_data[3] -= p_value[3];
}
// FUNCTION: LEGO1 0x10002930
void Vector4Impl::MullVectorImpl(float* p_value)
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
m_data[2] *= p_value[2];
m_data[3] *= p_value[3];
}
// FUNCTION: LEGO1 0x10002970
void Vector4Impl::MullScalarImpl(float* p_value)
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
m_data[2] *= *p_value;
m_data[3] *= *p_value;
}
// FUNCTION: LEGO1 0x100029b0
void Vector4Impl::DivScalarImpl(float* p_value)
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
m_data[2] /= *p_value;
m_data[3] /= *p_value;
}
// FUNCTION: LEGO1 0x100029f0
float Vector4Impl::DotImpl(float* p_a, float* p_b) const
{
return p_a[0] * p_b[0] + p_a[2] * p_b[2] + (p_a[1] * p_b[1] + p_a[3] * p_b[3]);
}
// FUNCTION: LEGO1 0x10002a20
void Vector4Impl::EqualsImpl(float* p_data)
{
float* vec = m_data;
vec[0] = p_data[0];
vec[1] = p_data[1];
vec[2] = p_data[2];
vec[3] = p_data[3];
}
// FUNCTION: LEGO1 0x10002a40
void Vector4Impl::SetMatrixProductImpl(float* p_vec, float* p_mat)
{
m_data[0] = p_vec[0] * p_mat[0] + p_vec[1] * p_mat[4] + p_vec[2] * p_mat[8] + p_vec[3] * p_mat[12];
m_data[1] = p_vec[0] * p_mat[1] + p_vec[1] * p_mat[5] + p_vec[2] * p_mat[9] + p_vec[4] * p_mat[13];
m_data[2] = p_vec[0] * p_mat[2] + p_vec[1] * p_mat[6] + p_vec[2] * p_mat[10] + p_vec[4] * p_mat[14];
m_data[3] = p_vec[0] * p_mat[3] + p_vec[1] * p_mat[7] + p_vec[2] * p_mat[11] + p_vec[4] * p_mat[15];
}
// FUNCTION: LEGO1 0x10002ae0
void Vector4Impl::SetMatrixProduct(Vector4Impl* p_a, float* p_b)
{
SetMatrixProductImpl(p_a->m_data, p_b);
}
// FUNCTION: LEGO1 0x10002b00
void Vector4Impl::Clear()
{
float* vec = m_data;
vec[0] = 0.0f;
vec[1] = 0.0f;
vec[2] = 0.0f;
vec[3] = 0.0f;
}
// FUNCTION: LEGO1 0x10002b20
float Vector4Impl::LenSquared() const
{
return m_data[1] * m_data[1] + m_data[0] * m_data[0] + m_data[2] * m_data[2] + m_data[3] * m_data[3];
}
// FUNCTION: LEGO1 0x10002b40
void Vector4Impl::EqualsScalar(float* p_value)
{
m_data[0] = *p_value;
m_data[1] = *p_value;
m_data[2] = *p_value;
m_data[3] = *p_value;
}
// Note close yet, included because I'm at least confident I know what operation
// it's trying to do.
// STUB: LEGO1 0x10002b70
int Vector4Impl::NormalizeQuaternion()
{
float* v = m_data;
float magnitude = v[1] * v[1] + v[2] * v[2] + v[0] * v[0];
if (magnitude > 0.0f) {
float theta = v[3] * 0.5f;
v[3] = cos(theta);
float frac = sin(theta);
magnitude = frac / sqrt(magnitude);
v[0] *= magnitude;
v[1] *= magnitude;
v[2] *= magnitude;
return 0;
}
return -1;
}
// FUNCTION: LEGO1 0x10002bf0
void Vector4Impl::UnknownQuaternionOp(Vector4Impl* p_a, Vector4Impl* p_b)
{
float* bDat = p_b->m_data;
float* aDat = p_a->m_data;
this->m_data[3] = aDat[3] * bDat[3] - (bDat[0] * aDat[0] + aDat[2] * bDat[2] + aDat[1] * aDat[1]);
this->m_data[0] = bDat[2] * aDat[1] - bDat[1] * aDat[2];
this->m_data[1] = aDat[2] * bDat[0] - bDat[2] * aDat[0];
this->m_data[2] = bDat[1] * aDat[0] - aDat[1] * bDat[0];
m_data[0] = p_b->m_data[3] * p_a->m_data[0] + p_a->m_data[3] * p_b->m_data[0] + m_data[0];
m_data[1] = p_b->m_data[1] * p_a->m_data[3] + p_a->m_data[1] * p_b->m_data[3] + m_data[1];
m_data[2] = p_b->m_data[2] * p_a->m_data[3] + p_a->m_data[2] * p_b->m_data[3] + m_data[2];
}
// FUNCTION: LEGO1 0x10003a60
void Vector3Impl::AddVectorImpl(float* p_value)
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
m_data[2] += p_value[2];
}
// FUNCTION: LEGO1 0x10003a90
void Vector3Impl::AddScalarImpl(float p_value)
{
m_data[0] += p_value;
m_data[1] += p_value;
m_data[2] += p_value;
}
// FUNCTION: LEGO1 0x10003ac0
void Vector3Impl::SubVectorImpl(float* p_value)
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
m_data[2] -= p_value[2];
}
// FUNCTION: LEGO1 0x10003af0
void Vector3Impl::MullVectorImpl(float* p_value)
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
m_data[2] *= p_value[2];
}
// FUNCTION: LEGO1 0x10003b20
void Vector3Impl::MullScalarImpl(float* p_value)
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
m_data[2] *= *p_value;
}
// FUNCTION: LEGO1 0x10003b50
void Vector3Impl::DivScalarImpl(float* p_value)
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
m_data[2] /= *p_value;
}
// FUNCTION: LEGO1 0x10003b80
float Vector3Impl::DotImpl(float* p_a, float* p_b) const
{
return p_a[0] * p_b[0] + p_a[2] * p_b[2] + p_a[1] * p_b[1];
}
// FUNCTION: LEGO1 0x10003ba0
void Vector3Impl::EqualsImpl(float* p_data)
{
float* vec = m_data;
vec[0] = p_data[0];
vec[1] = p_data[1];
vec[2] = p_data[2];
}
// FUNCTION: LEGO1 0x10003bc0
void Vector3Impl::Clear()
{
float* vec = m_data;
vec[0] = 0.0f;
vec[1] = 0.0f;
vec[2] = 0.0f;
}
// FUNCTION: LEGO1 0x10003bd0
float Vector3Impl::LenSquared() const
{
return m_data[1] * m_data[1] + m_data[0] * m_data[0] + m_data[2] * m_data[2];
}
// FUNCTION: LEGO1 0x10003bf0
void Vector3Impl::EqualsScalar(float* p_value)
{
m_data[0] = *p_value;
m_data[1] = *p_value;
m_data[2] = *p_value;
}
DECOMP_SIZE_ASSERT(Vector2, 0x8);
DECOMP_SIZE_ASSERT(Vector3, 0x8);
DECOMP_SIZE_ASSERT(Vector4, 0x8);

View File

@@ -1,115 +1,145 @@
#ifndef VECTOR_H
#define VECTOR_H
#include <vec.h>
#include "compat.h"
/*
* A simple array of three floats that can be indexed into.
*/
class Vector3 {
public:
float elements[3]; // storage is public for easy access
Vector3() {}
Vector3(float x, float y, float z)
{
elements[0] = x;
elements[1] = y;
elements[2] = z;
}
Vector3(const float v[3])
{
elements[0] = v[0];
elements[1] = v[1];
elements[2] = v[2];
}
const float& operator[](long i) const { return elements[i]; }
float& operator[](long i) { return elements[i]; }
};
/*
* A simple array of four floats that can be indexed into.
*/
struct Vector4 {
public:
float elements[4]; // storage is public for easy access
inline Vector4() {}
Vector4(float x, float y, float z, float w)
{
elements[0] = x;
elements[1] = y;
elements[2] = z;
elements[3] = w;
}
Vector4(const float v[4])
{
elements[0] = v[0];
elements[1] = v[1];
elements[2] = v[2];
elements[3] = v[3];
}
const float& operator[](long i) const { return elements[i]; }
float& operator[](long i) { return elements[i]; }
};
#include <math.h>
#include <memory.h>
// VTABLE: LEGO1 0x100d4288
// SIZE 0x8
class Vector2Impl {
// SIZE 0x08
class Vector2 {
public:
// FUNCTION: LEGO1 0x1000c0f0
inline Vector2Impl(float* p_data) { SetData(p_data); }
inline Vector2(float* p_data) { SetData(p_data); }
// vtable + 0x00 (no virtual destructor)
virtual void AddScalarImpl(float p_value) = 0;
virtual void AddVectorImpl(float* p_value) = 0;
virtual void SubVectorImpl(float* p_value) = 0;
virtual void MullScalarImpl(float* p_value) = 0;
// Note: virtual function overloads appear in the virtual table
// in reverse order of appearance.
// FUNCTION: LEGO1 0x10001f80
virtual void AddImpl(float* p_value)
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
} // vtable+0x04
// FUNCTION: LEGO1 0x10001fa0
virtual void AddImpl(float p_value)
{
m_data[0] += p_value;
m_data[1] += p_value;
} // vtable+0x00
// FUNCTION: LEGO1 0x10001fc0
virtual void SubImpl(float* p_value)
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
} // vtable+0x08
// Those are also overloads in all likelihood,
// but we need a type to do that.
// FUNCTION: LEGO1 0x10002000
virtual void MulScalarImpl(float* p_value)
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
} // vtable+0x0c
// FUNCTION: LEGO1 0x10001fe0
virtual void MulVectorImpl(float* p_value)
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
} // vtable+0x10
// FUNCTION: LEGO1 0x10002020
virtual void DivScalarImpl(float* p_value)
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
} // vtable+0x14
// FUNCTION: LEGO1 0x10002040
virtual float DotImpl(float* p_a, float* p_b) const { return p_b[0] * p_a[0] + p_b[1] * p_a[1]; } // vtable+0x18
// vtable + 0x10
virtual void MullVectorImpl(float* p_value) = 0;
virtual void DivScalarImpl(float* p_value) = 0;
virtual float DotImpl(float* p_a, float* p_b) const = 0;
// FUNCTION: LEGO1 0x10002060
virtual void SetData(float* p_data) { m_data = p_data; }
virtual void SetData(float* p_data) { m_data = p_data; } // vtable+0x1c
// vtable + 0x20
virtual void EqualsImpl(float* p_data) = 0;
virtual float* GetData();
virtual const float* GetData() const;
virtual void Clear() = 0;
// FUNCTION: LEGO1 0x10002070
virtual void EqualsImpl(float* p_data) { memcpy(m_data, p_data, sizeof(float) * 2); } // vtable+0x20
// vtable + 0x30
virtual float Dot(Vector2Impl* p_a, float* p_b) const;
virtual float Dot(float* p_a, Vector2Impl* p_b) const;
virtual float Dot(Vector2Impl* p_a, Vector2Impl* p_b) const;
virtual float Dot(float* p_a, float* p_b) const;
// FUNCTION: LEGO1 0x10002090
virtual float* GetData() { return m_data; } // vtable+0x28
// vtable + 0x40
virtual float LenSquared() const = 0;
virtual int Unitize();
// FUNCTION: LEGO1 0x100020a0
virtual const float* GetData() const { return m_data; } // vtable+0x24
// vtable + 0x48
virtual void Add(Vector2Impl* p_other);
virtual void Add(float* p_other);
virtual void Add(float p_value);
// FUNCTION: LEGO1 0x100020b0
virtual void Clear() { memset(m_data, 0, sizeof(float) * 2); } // vtable+0x2c
// vtable + 0x54
virtual void Sub(Vector2Impl* p_other);
virtual void Sub(float* p_other);
// FUNCTION: LEGO1 0x100020d0
virtual float Dot(float* p_a, float* p_b) const { return DotImpl(p_a, p_b); } // vtable+0x3c
// vtable + 0x5C
virtual void Mul(float* p_value);
virtual void Mul(Vector2Impl* p_other);
virtual void Mul(float& p_other);
virtual void Div(float& p_value);
// FUNCTION: LEGO1 0x100020f0
virtual float Dot(Vector2* p_a, Vector2* p_b) const { return DotImpl(p_a->m_data, p_b->m_data); } // vtable+0x38
// vtable + 0x6C
virtual void SetVector(Vector2Impl* p_other);
virtual void SetVector(float* p_other);
// FUNCTION: LEGO1 0x10002110
virtual float Dot(float* p_a, Vector2* p_b) const { return DotImpl(p_a, p_b->m_data); } // vtable+0x34
// FUNCTION: LEGO1 0x10002130
virtual float Dot(Vector2* p_a, float* p_b) const { return DotImpl(p_a->m_data, p_b); } // vtable+0x30
// FUNCTION: LEGO1 0x10002150
virtual float LenSquared() const { return m_data[0] * m_data[0] + m_data[1] * m_data[1]; } // vtable+0x40
// FUNCTION: LEGO1 0x10002160
virtual int Unitize()
{
float sq = LenSquared();
if (sq > 0.0f) {
float root = sqrt(sq);
if (root > 0) {
DivScalarImpl(&root);
return 0;
}
}
return -1;
} // vtable+0x44
// FUNCTION: LEGO1 0x100021c0
virtual void Add(float p_value) { AddImpl(p_value); } // vtable+0x50
// FUNCTION: LEGO1 0x100021d0
virtual void Add(float* p_other) { AddImpl(p_other); } // vtable+0x4c
// FUNCTION: LEGO1 0x100021e0
virtual void Add(Vector2* p_other) { AddImpl(p_other->m_data); } // vtable+0x48
// FUNCTION: LEGO1 0x100021f0
virtual void Sub(float* p_other) { SubImpl(p_other); } // vtable+0x58
// FUNCTION: LEGO1 0x10002200
virtual void Sub(Vector2* p_other) { SubImpl(p_other->m_data); } // vtable+0x54
// FUNCTION: LEGO1 0x10002210
virtual void Mul(float* p_other) { MulVectorImpl(p_other); } // vtable+0x64
// FUNCTION: LEGO1 0x10002220
virtual void Mul(Vector2* p_other) { MulVectorImpl(p_other->m_data); } // vtable+0x60
// FUNCTION: LEGO1 0x10002230
virtual void Mul(float& p_value) { MulScalarImpl(&p_value); } // vtable+0x5c
// FUNCTION: LEGO1 0x10002240
virtual void Div(float& p_value) { DivScalarImpl(&p_value); } // vtable+0x68
// FUNCTION: LEGO1 0x10002250
virtual void SetVector(float* p_other) { EqualsImpl(p_other); } // vtable+0x70
// FUNCTION: LEGO1 0x10002260
virtual void SetVector(Vector2* p_other) { EqualsImpl(p_other->m_data); } // vtable+0x6c
inline float& operator[](size_t idx) { return m_data[idx]; }
inline const float& operator[](size_t idx) const { return m_data[idx]; }
@@ -119,100 +149,261 @@ protected:
};
// VTABLE: LEGO1 0x100d4518
// SIZE 0x8
class Vector3Impl : public Vector2Impl {
// SIZE 0x08
class Vector3 : public Vector2 {
public:
inline Vector3Impl(float* p_data) : Vector2Impl(p_data) {}
// FUNCTION: LEGO1 0x1001d150
inline Vector3(float* p_data) : Vector2(p_data) {}
void AddScalarImpl(float p_value);
// Hack: Some code initializes a Vector3 from a (most likely) const float* source.
// Example: LegoCameraController::GetWorldUp
// Vector3 however is a class that can mutate its underlying source, making
// initialization with a const source fundamentally incompatible.
inline Vector3(const float* p_data) : Vector2((float*) p_data) {}
void AddVectorImpl(float* p_value);
// Note: virtual function overloads appear in the virtual table
// in reverse order of appearance.
void SubVectorImpl(float* p_value);
void MullScalarImpl(float* p_value);
void MullVectorImpl(float* p_value);
void DivScalarImpl(float* p_value);
float DotImpl(float* p_a, float* p_b) const;
// FUNCTION: LEGO1 0x10002270
virtual void EqualsCrossImpl(float* p_a, float* p_b)
{
m_data[0] = p_a[1] * p_b[2] - p_a[2] * p_b[1];
m_data[1] = p_a[2] * p_b[0] - p_a[0] * p_b[2];
m_data[2] = p_a[0] * p_b[1] - p_a[1] * p_b[0];
} // vtable+0x74
void EqualsImpl(float* p_data);
// FUNCTION: LEGO1 0x100022c0
virtual void EqualsCross(Vector3* p_a, Vector3* p_b) { EqualsCrossImpl(p_a->m_data, p_b->m_data); } // vtable+0x80
void Clear();
// FUNCTION: LEGO1 0x100022e0
virtual void EqualsCross(Vector3* p_a, float* p_b) { EqualsCrossImpl(p_a->m_data, p_b); } // vtable+0x7c
float LenSquared() const;
// FUNCTION: LEGO1 0x10002300
virtual void EqualsCross(float* p_a, Vector3* p_b) { EqualsCrossImpl(p_a, p_b->m_data); } // vtable+0x78
// vtable + 0x74
virtual void EqualsCrossImpl(float* p_a, float* p_b);
virtual void EqualsCross(float* p_a, Vector3Impl* p_b);
virtual void EqualsCross(Vector3Impl* p_a, float* p_b);
virtual void EqualsCross(Vector3Impl* p_a, Vector3Impl* p_b);
virtual void EqualsScalar(float* p_value);
// FUNCTION: LEGO1 0x10003bf0
virtual void EqualsScalar(float* p_value)
{
m_data[0] = *p_value;
m_data[1] = *p_value;
m_data[2] = *p_value;
} // vtable+0x84
// Vector2 overrides
// FUNCTION: LEGO1 0x10003a60
virtual void AddImpl(float* p_value) override
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
m_data[2] += p_value[2];
} // vtable+0x04
// FUNCTION: LEGO1 0x10003a90
virtual void AddImpl(float p_value) override
{
m_data[0] += p_value;
m_data[1] += p_value;
m_data[2] += p_value;
} // vtable+0x00
// FUNCTION: LEGO1 0x10003ac0
virtual void SubImpl(float* p_value) override
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
m_data[2] -= p_value[2];
} // vtable+0x08
// FUNCTION: LEGO1 0x10003b20
virtual void MulScalarImpl(float* p_value) override
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
m_data[2] *= *p_value;
} // vtable+0x0c
// FUNCTION: LEGO1 0x10003af0
virtual void MulVectorImpl(float* p_value) override
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
m_data[2] *= p_value[2];
} // vtable+0x10
// FUNCTION: LEGO1 0x10003b50
virtual void DivScalarImpl(float* p_value) override
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
m_data[2] /= *p_value;
} // vtable+0x14
// FUNCTION: LEGO1 0x10003b80
virtual float DotImpl(float* p_a, float* p_b) const override
{
return p_a[0] * p_b[0] + p_a[2] * p_b[2] + p_a[1] * p_b[1];
} // vtable+0x18
// FUNCTION: LEGO1 0x10003ba0
virtual void EqualsImpl(float* p_data) override { memcpy(m_data, p_data, sizeof(float) * 3); } // vtable+0x20
// FUNCTION: LEGO1 0x10003bc0
virtual void Clear() override { memset(m_data, 0, sizeof(float) * 3); } // vtable+0x2c
// FUNCTION: LEGO1 0x10003bd0
virtual float LenSquared() const override
{
return m_data[1] * m_data[1] + m_data[0] * m_data[0] + m_data[2] * m_data[2];
} // vtable+0x40
inline void Fill(float p_value) { EqualsScalar(&p_value); }
friend class Mx3DPointFloat;
};
// VTABLE: LEGO1 0x100d45a0
// SIZE 0x8
class Vector4Impl : public Vector3Impl {
class Vector4 : public Vector3 {
public:
inline Vector4Impl(float* p_data) : Vector3Impl(p_data) {}
inline Vector4(float* p_data) : Vector3(p_data) {}
void AddScalarImpl(float p_value);
// Note: virtual function overloads appear in the virtual table
// in reverse order of appearance.
void AddVectorImpl(float* p_value);
void SubVectorImpl(float* p_value);
void MullScalarImpl(float* p_value);
void MullVectorImpl(float* p_value);
void DivScalarImpl(float* p_value);
float DotImpl(float* p_a, float* p_b) const;
void EqualsImpl(float* p_data);
void Clear();
float LenSquared() const;
void EqualsScalar(float* p_value);
// vtable + 0x88
virtual void SetMatrixProduct(Vector4Impl* p_a, float* p_b);
virtual void SetMatrixProductImpl(float* p_vec, float* p_mat);
virtual int NormalizeQuaternion();
virtual void UnknownQuaternionOp(Vector4Impl* p_a, Vector4Impl* p_b);
inline Vector4& GetVector() { return *((Vector4*) m_data); }
};
// VTABLE: LEGO1 0x100d4488
// SIZE 0x14
class Vector3Data : public Vector3Impl {
public:
inline Vector3Data() : Vector3Impl(m_vector.elements) {}
inline Vector3Data(float p_x, float p_y, float p_z) : Vector3Impl(m_vector.elements), m_vector(p_x, p_y, p_z) {}
void CopyFrom(Vector3Data& p_other)
// FUNCTION: LEGO1 0x10002a40
virtual void SetMatrixProduct(float* p_vec, float* p_mat)
{
EqualsImpl(p_other.m_data);
m_data[0] = p_vec[0] * p_mat[0] + p_vec[1] * p_mat[4] + p_vec[2] * p_mat[8] + p_vec[3] * p_mat[12];
m_data[1] = p_vec[0] * p_mat[1] + p_vec[1] * p_mat[5] + p_vec[2] * p_mat[9] + p_vec[4] * p_mat[13];
m_data[2] = p_vec[0] * p_mat[2] + p_vec[1] * p_mat[6] + p_vec[2] * p_mat[10] + p_vec[4] * p_mat[14];
m_data[3] = p_vec[0] * p_mat[3] + p_vec[1] * p_mat[7] + p_vec[2] * p_mat[11] + p_vec[4] * p_mat[15];
} // vtable+0x8c
float* dest = m_vector.elements;
float* src = p_other.m_vector.elements;
for (size_t i = sizeof(m_vector) / sizeof(float); i > 0; --i)
*dest++ = *src++;
// FUNCTION: LEGO1 0x10002ae0
virtual void SetMatrixProduct(Vector4* p_a, float* p_b) { SetMatrixProduct(p_a->m_data, p_b); } // vtable+0x88
inline virtual int NormalizeQuaternion(); // vtable+90
inline virtual void UnknownQuaternionOp(Vector4* p_a, Vector4* p_b); // vtable+94
// Vector3 overrides
// FUNCTION: LEGO1 0x10002870
virtual void AddImpl(float* p_value) override
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
m_data[2] += p_value[2];
m_data[3] += p_value[3];
} // vtable+0x04
// FUNCTION: LEGO1 0x100028b0
virtual void AddImpl(float p_value) override
{
m_data[0] += p_value;
m_data[1] += p_value;
m_data[2] += p_value;
m_data[3] += p_value;
} // vtable+0x00
// FUNCTION: LEGO1 0x100028f0
virtual void SubImpl(float* p_value) override
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
m_data[2] -= p_value[2];
m_data[3] -= p_value[3];
} // vtable+0x08
// FUNCTION: LEGO1 0x10002970
virtual void MulScalarImpl(float* p_value) override
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
m_data[2] *= *p_value;
m_data[3] *= *p_value;
} // vtable+0x0c
// FUNCTION: LEGO1 0x10002930
virtual void MulVectorImpl(float* p_value) override
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
m_data[2] *= p_value[2];
m_data[3] *= p_value[3];
} // vtable+0x10
// FUNCTION: LEGO1 0x100029b0
virtual void DivScalarImpl(float* p_value) override
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
m_data[2] /= *p_value;
m_data[3] /= *p_value;
} // vtable+0x14
// FUNCTION: LEGO1 0x100029f0
virtual float DotImpl(float* p_a, float* p_b) const override
{
return p_a[0] * p_b[0] + p_a[2] * p_b[2] + (p_a[1] * p_b[1] + p_a[3] * p_b[3]);
} // vtable+0x18
// FUNCTION: LEGO1 0x10002a20
virtual void EqualsImpl(float* p_data) override { memcpy(m_data, p_data, sizeof(float) * 4); } // vtable+0x20
// FUNCTION: LEGO1 0x10002b00
virtual void Clear() override { memset(m_data, 0, sizeof(float) * 4); } // vtable+0x2c
// FUNCTION: LEGO1 0x10002b20
virtual float LenSquared() const override
{
return m_data[1] * m_data[1] + m_data[0] * m_data[0] + m_data[2] * m_data[2] + m_data[3] * m_data[3];
} // vtable+0x40
// FUNCTION: LEGO1 0x10002b40
virtual void EqualsScalar(float* p_value) override
{
m_data[0] = *p_value;
m_data[1] = *p_value;
m_data[2] = *p_value;
m_data[3] = *p_value;
} // vtable+0x84
};
// Note close yet, included because I'm at least confident I know what operation
// it's trying to do.
// STUB: LEGO1 0x10002b70
inline int Vector4::NormalizeQuaternion()
{
float* v = m_data;
float magnitude = v[1] * v[1] + v[2] * v[2] + v[0] * v[0];
if (magnitude > 0.0f) {
float theta = v[3] * 0.5f;
v[3] = cos(theta);
float frac = sin(theta);
magnitude = frac / sqrt(magnitude);
v[0] *= magnitude;
v[1] *= magnitude;
v[2] *= magnitude;
return 0;
}
inline void EqualsCross(Vector3Data& p_a, Vector3Data& p_b) { EqualsCrossImpl(p_a.m_data, p_b.m_data); }
return -1;
}
private:
Vector3 m_vector;
};
// FUNCTION: LEGO1 0x10002bf0
inline void Vector4::UnknownQuaternionOp(Vector4* p_a, Vector4* p_b)
{
float* bDat = p_b->m_data;
float* aDat = p_a->m_data;
// VTABLE: LEGO1 0x100d41e8
// SIZE 0x18
class Vector4Data : public Vector4Impl {
public:
inline Vector4Data() : Vector4Impl(m_vector.elements) {}
this->m_data[3] = aDat[3] * bDat[3] - (bDat[0] * aDat[0] + aDat[2] * bDat[2] + aDat[1] * aDat[1]);
this->m_data[0] = bDat[2] * aDat[1] - bDat[1] * aDat[2];
this->m_data[1] = aDat[2] * bDat[0] - bDat[2] * aDat[0];
this->m_data[2] = bDat[1] * aDat[0] - aDat[1] * bDat[0];
private:
Vector4 m_vector;
};
m_data[0] = p_b->m_data[3] * p_a->m_data[0] + p_a->m_data[3] * p_b->m_data[0] + m_data[0];
m_data[1] = p_b->m_data[1] * p_a->m_data[3] + p_a->m_data[1] * p_b->m_data[3] + m_data[1];
m_data[2] = p_b->m_data[2] * p_a->m_data[3] + p_a->m_data[2] * p_b->m_data[3] + m_data[2];
}
#endif // VECTOR_H