mirror of
				https://github.com/isledecomp/isle.git
				synced 2025-10-25 09:24:17 +00:00 
			
		
		
		
	 13d994a1ee
			
		
	
	13d994a1ee
	
	
	
		
			
			* Implement LegoExtraActor:: VTable0xa4 & FUN_1002aae0 * Match LegoExtraActor::FUN_1002aae0 --------- Co-authored-by: Christian Semmler <mail@csemmler.com>
		
			
				
	
	
		
			207 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef MATRIX_H
 | |
| #define MATRIX_H
 | |
| 
 | |
| #include "vector.h"
 | |
| 
 | |
| #include <memory.h>
 | |
| 
 | |
| struct UnknownMatrixType {
 | |
| 	float m_data[4][4];
 | |
| };
 | |
| 
 | |
| // Note: Many functions most likely take const references/pointers instead of non-const.
 | |
| // The class needs to undergo a very careful refactoring to fix that (no matches should break).
 | |
| 
 | |
| // VTABLE: LEGO1 0x100d4350
 | |
| // SIZE 0x08
 | |
| class Matrix4 {
 | |
| public:
 | |
| 	inline Matrix4(float (*p_data)[4]) { SetData(p_data); }
 | |
| 
 | |
| 	// Note: virtual function overloads appear in the virtual table
 | |
| 	// in reverse order of appearance.
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002320
 | |
| 	virtual void Equals(float (*p_data)[4]) { memcpy(m_data, p_data, sizeof(float) * 4 * 4); } // vtable+0x04
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002340
 | |
| 	virtual void Equals(const Matrix4& p_matrix)
 | |
| 	{
 | |
| 		memcpy(m_data, p_matrix.m_data, sizeof(float) * 4 * 4);
 | |
| 	} // vtable+0x00
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002360
 | |
| 	virtual void SetData(float (*p_data)[4]) { m_data = p_data; } // vtable+0x0c
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002370
 | |
| 	virtual void SetData(UnknownMatrixType& p_matrix) { m_data = p_matrix.m_data; } // vtable+0x08
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002380
 | |
| 	virtual float (*GetData())[4] { return m_data; } // vtable+0x14
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002390
 | |
| 	virtual float (*GetData() const)[4] { return m_data; } // vtable+0x10
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x100023a0
 | |
| 	virtual float* Element(int p_row, int p_col) { return &m_data[p_row][p_col]; } // vtable+0x1c
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x100023c0
 | |
| 	virtual const float* Element(int p_row, int p_col) const { return &m_data[p_row][p_col]; } // vtable+0x18
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x100023e0
 | |
| 	virtual void Clear() { memset(m_data, 0, 16 * sizeof(float)); } // vtable+0x20
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x100023f0
 | |
| 	virtual void SetIdentity()
 | |
| 	{
 | |
| 		Clear();
 | |
| 		m_data[0][0] = 1.0f;
 | |
| 		m_data[1][1] = 1.0f;
 | |
| 		m_data[2][2] = 1.0f;
 | |
| 		m_data[3][3] = 1.0f;
 | |
| 	} // vtable+0x24
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002420
 | |
| 	virtual void operator=(const Matrix4& p_matrix) { Equals(p_matrix); } // vtable+0x28
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002430
 | |
| 	virtual Matrix4& operator+=(float (*p_data)[4])
 | |
| 	{
 | |
| 		for (int i = 0; i < 16; i++) {
 | |
| 			((float*) m_data)[i] += ((float*) p_data)[i];
 | |
| 		}
 | |
| 		return *this;
 | |
| 	} // vtable+0x2c
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002460
 | |
| 	virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z)
 | |
| 	{
 | |
| 		m_data[3][0] += *p_x;
 | |
| 		m_data[3][1] += *p_y;
 | |
| 		m_data[3][2] += *p_z;
 | |
| 	} // vtable+0x30
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x100024a0
 | |
| 	virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z)
 | |
| 	{
 | |
| 		m_data[3][0] = *p_x;
 | |
| 		m_data[3][1] = *p_y;
 | |
| 		m_data[3][2] = *p_z;
 | |
| 	} // vtable+0x34
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x100024d0
 | |
| 	virtual void Product(float (*p_a)[4], float (*p_b)[4])
 | |
| 	{
 | |
| 		float* cur = (float*) m_data;
 | |
| 		for (int row = 0; row < 4; row++) {
 | |
| 			for (int col = 0; col < 4; col++) {
 | |
| 				*cur = 0.0f;
 | |
| 				for (int k = 0; k < 4; k++) {
 | |
| 					*cur += p_a[row][k] * p_b[k][col];
 | |
| 				}
 | |
| 				cur++;
 | |
| 			}
 | |
| 		}
 | |
| 	} // vtable+0x3c
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x10002530
 | |
| 	virtual void Product(const Matrix4& p_a, const Matrix4& p_b) { Product(p_a.m_data, p_b.m_data); } // vtable+0x38
 | |
| 
 | |
| 	// FUNCTION: LEGO1 0x100a0ff0
 | |
| 	inline void Scale(const float& p_x, const float& p_y, const float& p_z)
 | |
| 	{
 | |
| 		for (int i = 0; i < 4; i++) {
 | |
| 			m_data[i][0] *= p_x;
 | |
| 			m_data[i][1] *= p_y;
 | |
| 			m_data[i][2] *= p_z;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	inline void RotateX(const float& p_angle)
 | |
| 	{
 | |
| 		float s = sin(p_angle);
 | |
| 		float c = cos(p_angle);
 | |
| 		float matrix[4][4];
 | |
| 		memcpy(matrix, m_data, sizeof(float) * 16);
 | |
| 		for (int i = 0; i < 4; i++) {
 | |
| 			m_data[i][1] = matrix[i][1] * c - matrix[i][2] * s;
 | |
| 			m_data[i][2] = matrix[i][2] * c + matrix[i][1] * s;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	inline void RotateZ(const float& p_angle)
 | |
| 	{
 | |
| 		float s = sin(p_angle);
 | |
| 		float c = cos(p_angle);
 | |
| 		float matrix[4][4];
 | |
| 		memcpy(matrix, m_data, sizeof(float) * 16);
 | |
| 		for (int i = 0; i < 4; i++) {
 | |
| 			m_data[i][0] = matrix[i][0] * c - matrix[i][1] * s;
 | |
| 			m_data[i][1] = matrix[i][1] * c + matrix[i][0] * s;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	inline virtual void ToQuaternion(Vector4& p_resultQuat); // vtable+0x40
 | |
| 	inline virtual int FromQuaternion(const Vector4& p_vec); // vtable+0x44
 | |
| 
 | |
| 	float* operator[](size_t idx) { return m_data[idx]; }
 | |
| 	const float* operator[](size_t idx) const { return m_data[idx]; }
 | |
| 
 | |
| protected:
 | |
| 	float (*m_data)[4];
 | |
| };
 | |
| 
 | |
| // Not close, Ghidra struggles understinging this method so it will have to
 | |
| // be manually worked out. Included since I at least figured out what it was
 | |
| // doing with rotateIndex and what overall operation it's trying to do.
 | |
| // STUB: LEGO1 0x10002550
 | |
| inline void Matrix4::ToQuaternion(Vector4& p_outQuat)
 | |
| {
 | |
| 	/*
 | |
| 	float trace = m_data[0] + m_data[5] + m_data[10];
 | |
| 	if (trace > 0) {
 | |
| 		trace = sqrt(trace + 1.0);
 | |
| 		p_outQuat->GetData()[3] = trace * 0.5f;
 | |
| 		p_outQuat->GetData()[0] = (m_data[9] - m_data[6]) * trace;
 | |
| 		p_outQuat->GetData()[1] = (m_data[2] - m_data[8]) * trace;
 | |
| 		p_outQuat->GetData()[2] = (m_data[4] - m_data[1]) * trace;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// ~GLOBAL: LEGO1 0x100d4090
 | |
| 	static int rotateIndex[] = {1, 2, 0};
 | |
| 
 | |
| 	// Largest element along the trace
 | |
| 	int largest = m_data[0] < m_data[5];
 | |
| 	if (*Element(largest, largest) < m_data[10])
 | |
| 		largest = 2;
 | |
| 
 | |
| 	int next = rotateIndex[largest];
 | |
| 	int nextNext = rotateIndex[next];
 | |
| 	float valueA = *Element(nextNext, nextNext);
 | |
| 	float valueB = *Element(next, next);
 | |
| 	float valueC = *Element(largest, largest);
 | |
| 
 | |
| 	// Above is somewhat decomped, below is pure speculation since the automatic
 | |
| 	// decomp becomes very garbled.
 | |
| 	float traceValue = sqrt(valueA - valueB - valueC + 1.0);
 | |
| 
 | |
| 	p_outQuat->GetData()[largest] = traceValue * 0.5f;
 | |
| 	traceValue = 0.5f / traceValue;
 | |
| 
 | |
| 	p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue;
 | |
| 	p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue;
 | |
| 	p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue;
 | |
| 	*/
 | |
| }
 | |
| 
 | |
| // No idea what this function is doing and it will be hard to tell until
 | |
| // we have a confirmed usage site.
 | |
| // STUB: LEGO1 0x10002710
 | |
| inline int Matrix4::FromQuaternion(const Vector4& p_vec)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #endif // MATRIX_H
 |