ttl fast floating point cordic hyperbolic table (ffphthet) ffphthet idnt 1,1 ffp inverse hyperbolic table *************************************** * (c) copyright 1981 by motorola inc. * *************************************** section 9 xdef ffphthet external definition ********************************************************* * inverse hyperbolic tangent table for cordic * * * * the following table is used during cordic * * transcendental evaluations for log and exp. it has * * inverse hyperbolic tangent for 2**-n where n ranges * * from 1 to 24. the format is binary(31,29) * * precision (i.e. the binary point is assumed between * * bits 27 and 28 with three leading non-fraction bits.) * ********************************************************* ffphthet dc.l $8c9f53d0>>3 harctan(2**-1) .549306144 dc.l $4162bbe8>>3 harctan(2**-2) .255412812 dc.l $202b1238>>3 harctan(2**-3) dc.l $10055888>>3 harctan(2**-4) dc.l $0800aac0>>3 harctan(2**-5) dc.l $04001550>>3 harctan(2**-6) dc.l $020002a8>>3 harctan(2**-7) dc.l $01000050>>3 harctan(2**-8) dc.l $00800008>>3 harctan(2**-9) dc.l $00400000>>3 harctan(2**-10) dc.l $00200000>>3 harctan(2**-11) dc.l $00100000>>3 harctan(2**-12) dc.l $00080000>>3 harctan(2**-13) dc.l $00040000>>3 harctan(2**-14) dc.l $00020000>>3 harctan(2**-15) dc.l $00010000>>3 harctan(2**-16) dc.l $00008000>>3 harctan(2**-17) dc.l $00004000>>3 harctan(2**-18) dc.l $00002000>>3 harctan(2**-19) dc.l $00001000>>3 harctan(2**-20) dc.l $00000800>>3 harctan(2**-21) dc.l $00000400>>3 harctan(2**-22) dc.l $00000200>>3 harctan(2**-23) dc.l $00000100>>3 harctan(2**-24) end