Files
Digital-Research-Source-Code/CPM OPERATING SYSTEMS/CPM 68K/1.0X SOURCES/v101/bdos/pgmld.s
Sepp J Morris 31738079c4 Upload
Digital Research
2020-11-06 18:50:37 +01:00

538 lines
13 KiB
ArmAsm

*********************************
* *
* Function 59 -- Program Load *
* Assembly language version *
* *
* June 8, 1982 *
* *
*********************************
.globl _pgmld * this routine is public
secsize = 128 * CP/M sector size
* d0 always contains the return parameter from pgmld
* d1 is the return register from local subroutines
* a0 contains the pointer to the Load Parm Block passed to pgmld
* Return parameters in d0 are:
* 00 - function successful
* 01 - insufficient memory or bad header in file
* 02 - read error on file
* 03 - bad relocation information in file
* Entry point for Program Load routine
_pgmld:
movem.l d1-d7/a0-a6, -(sp) * save everything, just to be safe
move.l 60(sp),a0 * get pointer to LPB
clr.l d0 * start with return parm cleared
bsr gethdr * get header
tst d0
bne lddone * if unsuccessful, return
bsr setaddr * set up load addresses
tst d0
bne lddone * if unsuccessful, return
bsr rdtxt * read code and data text segments into mem
tst d0
bne lddone * if unsuccessful, return
move.l tstart,d7
cmp.l cseg,d7
beq noreloc
bsr reloc * do relocation if necessary
noreloc:
tst d0
bne lddone
bsr setrtn * set up return parameters
lddone:
move.l 64(sp), d1
bsr setdma * restore dma address
movem.l (sp)+,d1-d7/a0-a6
rts
* Subroutines
readseq:
* CP/M read sequential function
move.l d0,-(sp) * save return parm
move.l FCBPtr(a0),d1
moveq #20,d0 * read seq function
trap #2 * call bdos
move.l d0,d1 * return parm in d1
move.l (sp)+,d0
rts
setdma:
* CP/M set dma function
move.l d0,-(sp) * save return parm
moveq #26,d0 * set dma function
trap #2 * call bdos
move.l (sp)+,d0 * restore d0
rts
gethdr:
* Get header into buffer in data segment
move.l LoAdr(a0),d1
bsr setdma
bsr readseq
tst d1 * read ok?
bne badhdr * if no, return bad
moveq #18,d7
movea.l LoAdr(a0),a5
movea.l #hdr,a6
geth1: move.w (a5)+,(a6)+ * move header into hdr
dbf d7,geth1
rts
badhdr: moveq #2,d0
rts
conflict:
* input parms: d2, d3 = 4 * segment nmbr
* if segment d2/4 overlaps segment d3/4, then return 1 in d1
* else return 0 in d1
* uses d7, a2, a3
clr.l d1 * assume it will work
movea.l #cseg,a2 * a2 points to start of segment addresses
movea.l #csize,a3 * a3 points to start of segment lengths
move.l 0(a2,d2),d7 * get 1st seg start
cmp.l 0(a2,d3),d7 * is 1st seg above 2nd seg?
bge conf1
add.l 0(a3,d2),d7 * yes, find top of 1st seg
cmp.l 0(a2,d3),d7 * above start of 2nd seg?
bgt confbd * if yes, we have a conflict
rts * else, return good
conf1:
move.l 0(a2,d3),d7
add.l 0(a3,d3),d7 * find top of 2nd seg
cmp.l 0(a2,d2),d7 * above start of 1st seg?
ble confgd * if no, we're ok
confbd: moveq.l #1,d1
confgd: rts
trymemtp:
* entry: d2 is a segment nmbr [0..4]
* try to fit it at top of memory
* uses d3, d6, d7, a5, a6
* returns 0 in d1 if ok
move.l d2,d6 * d6 is loop counter for chksegs
subq #1,d6
lsl #2,d2 * multiply d2 by 4
move.l HiAdr(a0),d7 * top of mem to d7
chksegs:
* entry: d2 = 4 * (segment nmbr to try)
* d6 = (d2/4) - 1 (loop counter)
* d7 = address below which to try it
* check for conflicts with segments [0..d6] and low memory boundary
* return 0 in d1 if no conflicts, else d1 = 1
* uses d3, a5, a6
movea.l #cseg,a5
movea.l #csize,a6
sub.l 0(a6,d2),d7 * subtract size of segment to try
bclr #0,d7 * make it even address
move.l d7,0(a5,d2) * insert address in segment table
cmp.l LoAdr(a0),d7 * check for conflict with low memory
blt confbd
clr.l d3 * check for conflicts with 0..d6
chk1:
bsr conflict
addq.l #4,d3
tst.l d1 * conflict with this seg?
dbne d6,chk1 * if no, try next
rts
fndseg:
* entry: d2 is a segment nmbr [0..4]
* try to fit segment d2 directly below segments 0..(d2-1)
* uses d3-d7, a5, a6
move.l d2,d5 * d5 is loop counter to find fit
subq.l #1,d5
move.l d5,temp
lsl.l #2,d2 * multiply segment by 4
clr.l d4 * d4 is segment to try to fit below
fnd1:
move.l temp,d6 * d6 is loop counter for chksegs
movea.l #cseg,a5
move.l 0(a5,d4),d7 * segment address to d7
bsr chksegs * check for conflicts
addq.l #4,d4
tst.l d1
dbeq d5,fnd1 * if conflict, try next
rts
setaddr:
* Set up load addresses for cseg, dseg, bss, basepg, and stack
move.w magic,d6
andi.w #$fffe,d6
cmpi.w #$601a,d6
bne badadr * if magic nmbr <> 601a or 601b, skip
move.l bpsize,symsize
move.l #256,d7
move.l d7,bpsize * base page is 256 bytes
lea stksize,a2
cmp (a2),d7
blt set0 * if stack size < 256, set to 256
move.l d7,(a2)
set0: cmpi.w #$601b,magic
beq seta
tst.w rlbflg
beq set1
seta: move.l tstart,cseg * if not relocatable or hdr = $601b,
bra set2 * cseg starts at tstart
set1: btst #0,Flags(a0)
bne sldhi
* relocatable, load low
move.l LoAdr(a0),d7
add.l #$101,d7 * leave room for base page
bclr #0,d7
move.l d7,cseg * cseg is bottom of mem + $100 (even boundary)
bra set2
sldhi:
* relocatable, load high
move.l HiAdr(a0),d7
sub.l csize,d7
sub.l dsize,d7
sub.l bsize,d7
subq.l #4,d7
bclr #0,d7 * put cseg at next even address below
move.l d7,cseg * high memory - (sum of sizes)
set2:
* Cseg has been set up. Now do dseg, bseg
cmpi.w #$601b,magic
bne set3
* if magic # = 601b, take addr from hdr
move.l dstart,dseg
move.l bstart,bseg
bra set4
set3:
* if short header, dseg and bseg follow cseg
move.l cseg,d7
add.l csize,d7
addq.l #1,d7
bclr #0,d7
move.l d7,dseg
add.l dsize,d7
addq.l #1,d7
bclr #0,d7
move.l d7,bseg
set4:
* cseg, dseg, bseg set up
* now find a place for the base page and stack
moveq.l #3,d2
bsr fndseg * try to fit base page below cseg, dseg, bseg
tst.l d1
beq set5 * if found, skip
moveq.l #3,d2
bsr trymemtp * else, try top of memory
tst.l d1
bne badadr * if fail, exit
set5: moveq.l #4,d2
bsr trymemtp * try to fit stack at top of memory
tst.l d1
beq set6 * if ok, skip
moveq.l #4,d2
bsr fndseg * else, try to fit below other segs
tst.l d1
bne badadr
set6:
* now check all segments for conflicts with low and high memory boundaries
movea.l #cseg,a5
movea.l #csize,a6
clr.l d2
moveq #4,d3 * loop counter
set7: move.l 0(a5,d2),d7 * get segment base
cmp.l LoAdr(a0),d7 * above bottom of memory?
blt badadr
add.l 0(a6,d2),d7 * find top of segment
cmp.l HiAdr(a0),d7 * below top of memory?
bgt badadr
addq.l #4,d2 * point to next segment
dbf d3,set7
rts
badadr: moveq.l #1,d0
rts
movebuf:
* move (d3) bytes from the base page buffer to (a2)
* uses d6
movea.l basepg,a1
move.l #secsize,d6
sub.w bufbyts,d6 * address to move from =
adda.w d6,a1 * (basepg) + secsize - (bufbyts)
sub.w d3,bufbyts * update # bytes buffered
bra moveb2
moveb1: move.b (a1)+,(a2)+ * do the move
moveb2: dbf d3,moveb1
rts
rdtxt:
* Read code and data text into memory
* during this routine, a2 is always the load address,
* d2 is number of bytes left to load
moveq #63,d7
movea.l LoAdr(a0),a5
movea.l basepg,a6
rdtxt1: move.w (a5)+,(a6)+ * move header sector to base page
dbf d7,rdtxt1
move.w #secsize-28,d7
cmpi.w #$601a,magic * short header?
beq rdtxt2
subq.w #8,d7
rdtxt2: move.w d7,bufbyts * indicate # bytes of text in buffer
move.w #2,loop * do for code, data segments
move.l cseg,a2 * start at cseg
move.l csize,d2 * for csize bytes
rdtxt3:
clr.l d3
move.w bufbyts,d3
cmp.l d2,d3 * # bytes in buffer >= # bytes to load?
blt rdtxt4
move.l d2,d3
bsr movebuf * if yes, move # bytes to load
bra finrd
rdtxt4:
sub.l d3,d2 * if no, update # bytes to load
bsr movebuf * move remainder of buffer
move.l #secsize,d3 * d3 = secsize fo following loop
rdtxt5:
cmp.l d3,d2 * have at least one more full sector?
blt rdtxt6
move.l a2,d1
bsr setdma * if yes, set up dma address
bsr readseq * read next sector
tst.w d1
bne rdbad * if no good, exit
sub.l d3,d2 * decrement # bytes to load
adda.l #secsize,a2 * increment dma address
bra rdtxt5
rdtxt6:
tst.l d2 * any more bytes to read?
beq finrd
move.l basepg,d1
bsr setdma
bsr readseq * if yes, read into base page
tst.w d1
bne rdbad
move.w d3,bufbyts * indicate that we've buffered a sector
move.l d2,d3
bsr movebuf * move remainder of segment
finrd:
move.l dseg,a2 * set up to load data segment
move.l dsize,d2
sub.w #1,loop
bne rdtxt3
move.l bseg,a2 * clear the bss segment
move.l bsize,d2
beq rdtxt8
rdtxt7: clr.b (a2)+
subq.l #1,d2
bne rdtxt7
rdtxt8: rts
rdbad: moveq.l #2,d0
rts
relocword:
* relocate word at (a2) based on reloc bits at (a3)
* lsb of d2 indicates whether previous word was 1st half of long-word
move.w (a3)+,d7 * get relocation info
andi.w #7,d7 * strip off symbol table bits
lsl #1,d7 * multiply by 2
jmp 2(pc,d7)
bra relabs
bra reldata
bra relcode
bra relbss
bra relbad
bra rellong
bra relbad
bra relop
relbad: move.l (sp)+,d0 * pop return address
moveq #3,d0 * return bad relocation to main routine
rts
relabs:
relop: bclr #0,d2 * reset long word flag
tst.w (a2)+ * point to next word of segment
rts
rellong:
bset #0,d2 * set long word flag
tst.w (a2)+ * point to next word of segment
rts
reldata:
relbss:
relcode:
bclr #0,d2 * long word flag set?
bne relc1 * if yes, skip
move.w (a2),d6
add.w d5,d6
move.w d6,(a2)+
rts
relc1: tst.w -(a2) * point to first word of long
move.l (a2),d6
add.l d5,d6
move.l d6,(a2)+ * note that a2 points past long word
rts
reloc:
* Modify address references of code and data segments based on relocation bits
* During this routine,
* a2 points to text file to relocate
* a3 points to relocation word in basepg
* lsb of d2 is long word flag (set on reloc type 5, reset on next word)
* d3 is # words in relocation buffer
* d4 is nmbr of words left to relocate
* d5 is relocation offset
move.l basepg,d1
bsr setdma * we will always read into base page
* skip past the symbol table
move.l symsize,d7
divu #secsize,d7 * calculate how many sectors to skip
* note that max # symbols is 8k, which is 896 sectors of 128 bytes
move.w d7,d6 * d6 is nmbr sectors to skip
swap d7 * d7 is nmbr bytes to skip
move.w bufbyts,d3
sub.w d7,d3 * subtract bytes to skip from buffer
bge skip1
addi #secsize,d3 *if amt in buffer < # bytes to skip,
addq #1,d6 * read in 1 extra sector
skip1: move.l basepg,a3
adda #secsize,a3
suba.w d3,a3 * set up a3 to point to buffer
lsr #1,d3 * d3 is nmbr words in buffer
bra skip3
skip2:
bsr readseq * read next symbol table sector
tst.w d1
bne rdbad
skip3: dbf d6,skip2
* we got past symbol table
* a3, d3 are set up
move.l cseg,d5
move.l d5,a2 * relocate cseg first
sub.l tstart,d5 * d5 contains the relocation offset
move.l csize,d4 * nmbr of bytes to relocate
move.w #2,loop * we're going to relocate 2 segments
reloc1:
* relocate one segment
clr.l d2 * clear long word flag
lsr.l #1,d4 * make d4 indicate # words
bra reloc4
reloc2:
subq.w #1,d3
bpl reloc3
bsr readseq * if no more words in buffer, refill it
tst.w d1
bne rdbad
move.l basepg,a3
move.w #(secsize/2)-1,d3
reloc3:
bsr relocword * relocate one word
subq.l #1,d4
reloc4:
tst.l d4 * any more to relocate in this segment?
bne reloc2 * if yes, do it
move.l dseg,a2 * else, set up for dseg
move.l dsize,d4
sub.w #1,loop
bne reloc1
rts
setrtn:
* Set up the return parameters in Ld Parm Blk and Base Page
move.l basepg,BasPage(a0)
move.l stk,d7
add.l stksize,d7
bclr #0,d7
move.l d7,Stack(a0)
move.l basepg,a1
move.l LoAdr(a0),(a1)+
move.l HiAdr(a0),(a1)+
move.l cseg,(a1)+
move.l csize,(a1)+
move.l dseg,(a1)+
move.l dsize,(a1)+
move.l bseg,(a1)+
move.l bsize,(a1)
* find size of free memory after bss segment
move.l HiAdr(a0),d7 * d7 contains next segment above bss
move.l -4(a1),d6
add.l (a1)+,d6 * d6 points to start of free mem after bss
movea.l #cseg,a6 * a6 points to segment to try
moveq #4,d5 * try for all segments
clr.l bseg * but force bss not to appear
setb1: cmp.l (a6),d6 * segment above bss?
bhi setb2
cmp.l (a6),d7 * segment is above bss. Is it below previous?
bls setb2
move.l (a6),d7
setb2: tst.l (a6)+ * point to next segment
dbf d5,setb1
sub.l d6,d7 * diff between bss top and next segment abv
move.l d7,(a1)+
* now put disk number that we loaded from into base page
movea.l FCBPtr(a0),a2
move.b (a2),d0 * get disk select byte
bne setb3 * if not auto-select, skip
move #25,d0
trap #2 * get default disk
addq #1,d0 * we want it in range of 1..16
setb3: move.b d0,(a1)+ * move disk number into base page
clr.l d0 * function OK
rts
.bss
* offsets from start of parameter block
FCBPtr = 0
LoAdr = 4
HiAdr = 8
BasPage = 12 * return parameters
Stack = 16
Flags = 21
hdr:
* load file header is read into here
magic: .ds.w 1
csize: .ds.l 1
dsize: .ds.l 1
bsize: .ds.l 1
bpsize: .ds.l 1 * symb tbl size is swapped with base page size
stksize: .ds.l 1
tstart: .ds.l 1
rlbflg: .ds.w 1
dstart: .ds.l 1
bstart: .ds.l 1
cseg: .ds.l 1
dseg: .ds.l 1
bseg: .ds.l 1
basepg: .ds.l 1
stk: .ds.l 1
symsize: .ds.l 1
temp: .ds.l 1
loop: .ds.w 1
bufbyts: .ds.w 1
.end